Abstract:
A light emitting diode (LED) package (300) with primary optic and method of fabricating the same is disclosed that comprises an LED (102) disposed on a surface. The package further comprises at least one intermediate element (104) on the surface and at least partially surrounding the LED. Furthermore, an encapsulant (112) is over the LED forming a primary optic. The intermediate element at least partially defines the shape of the primary optic.
Abstract:
A specular reflector and LED lamps using embodiments of the reflector are disclosed. Embodiments of the invention provide a reflector (100, 302, 404, 704) for solid state lamps (400, 500, 600). The reflector (100, 302, 404, 704) can be a specular reflector. The reflector (100, 302, 404, 704) includes a rigid, polymeric substrate (104, 304) and sputtered metal (106, 306, 405) applied to the substrate (104, 304). In some embodiments, the metal is silver. In some embodiments, the metal (106, 306, 405) is applied without an intervening base coat. In some embodiments, the substrate (104, 304) is made from or includes an aromatic polyester such as polyarylate. The reflector (100, 302, 404, 704) can include a discontinuous or irregular surface yet still exhibit very high overall reflectivity and efficiency because the metal (106, 306, 405) can be applied without an intervening base coat. In some embodiments, the reflector is used in lamps having a retroreflective optical design.
Abstract:
A modular troffer-style fixture particularly well- suited for use with solid state light sources. The fixture comprises a reflector (102) that includes parallel rails running along its length, providing a mount mechanism and structural support. An exposed heat sink (500) is disposed proximate to the reflector. The portion of the heat sink facing the reflector functions as a mount surface for the light sources. The heat sink is hollow through the center in the longitudinal direction. The hollow portion defines a conduit through which electrical conductors can be run to power light emitters. One or more light sources disposed along the heat sink mount surface emit light toward the reflector where it can be mixed and/or shaped before it is emitted from the troffer as useful light. End caps (110) are arranged at both ends of the reflector and heat sink, allowing for the easy connection of multiple units in a serial arrangement.
Abstract:
An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a Schottky junction with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact.
Abstract:
Light-emitting die (LED) Lamps, heat sinks, and related methods are provided. An LED lamp can include a mounting substrate having a top surface, a bottom surface and side edges. An LED package can be disposed on the top surface of the mounting substrate with the LED package comprising an LED chip. The LED lamp can include a heat sink that can include a heat sink base and a spacer extending upward from the base. The spacer can have a mounting area or pad distal from the heat sink base on which the bottom surface of the mounting substrate is disposed. The spacer can also have a width that is less than a width between the side edges of the mounting substrate. The LED lamp can further include a lens disposed over the LED package and the mounting substrate.
Abstract:
Methods of forming a semiconductor structure include providing an insulation layer on a semiconductor layer and diffusing cesium ions into the insulation layer from a cesium ion source outside the insulation layer. A MOSFET including an insulation layer treated with cesium ions may exhibit increased inversion layer mobility.
Abstract:
A packaged light emitting diode (LED) includes a submount, a monolithic multi-junction LED on the submount, and an encapsulant material on the monolithic multi-junction LED. The monolithic multi-junction LED includes a substrate, a plurality of sub-LEDs on the submount, a plurality of conductive metal interconnects coupled to the sub-LEDs and connecting the sub-LEDs in a predetermined arrangement including an anode contact and a cathode contact, and an electrostatic discharge protection circuit in the substrate and coupled in parallel with the arrangement of sub-LEDs.
Abstract:
A solid state lighting apparatus can include a substrate having first and second opposing surfaces, where at least one of the opposing surfaces is configured to mount devices thereon. A string of chip-on-board light emitting diode (LED) sets, can be on the first surface of the substrate and coupled in series with one another. An ac voltage source input, from outside the solid state lighting apparatus, can be coupled to the first or second surface of the substrate.
Abstract:
A modular troffer-style fixture particularly well- suited for use with solid state light sources. The fixture comprises a reflector that includes parallel rails running along its length, providing a mount mechanism and structural support. An exposed heat sink is disposed proximate to the reflector. The portion of the heat sink facing the reflector functions as a mount surface for the light sources. The heat sink is hollow through the center in the longitudinal direction. The hollow portion defines a conduit through which electrical conductors can be run to power light emitters. One or more light sources disposed along the heat sink mount surface emit light toward the reflector where it can be mixed and/or shaped before it is emitted from the troffer as useful light. End caps are arranged at both ends of the reflector and heat sink, allowing for the easy connection of multiple units in a serial arrangement.
Abstract:
Embodiments of a semiconductor device having increased channel mobility and methods of manufacturing thereof are disclosed. In one embodiment, the semiconductor device includes a substrate including a channel region and a gate stack on the substrate over the channel region. The gate stack includes an alkaline earth metal. In one embodiment, the alkaline earth metal is Barium (Ba). In another embodiment, the alkaline earth metal is Strontium (Sr). The alkaline earth metal results in a substantial improvement of the channel mobility of the semiconductor device.