Abstract:
A method and apparatus for processing a bevel edge is provided. A substrate is placed in a bevel processing chamber and a passivation layer is formed on the substrate only around a bevel region of the substrate using a passivation plasma confined in a peripheral region of the bevel processing chamber. The substrate may undergo a subsequent semiconductor process, during which the bevel edge region of the substrate is protected by the passivation layer. Alternatively, the passivation layer may be patterned using a patterning plasma formed in an outer peripheral region of the processing chamber, the patterning plasma being confined by increasing plasma confinement. The passivation layer on outer edge portion of the bevel region is removed, while the passivation layer on an inner portion of the bevel region is maintained. The bevel edge of the substrate may be cleaned using the patterned passivation layer as a protective mask.
Abstract:
Methods and systems to optimize wafer placement repeatability in semiconductor manufacturing equipment using a controlled series of wafer movements are provided. In one embodiment, a preliminary station calibration is performed to teach a robot position for each station interfaced to facets of a vacuum transfer module used in semiconductor manufacturing. The method also calibrates the system to obtain compensation parameters that take into account the station where the wafer is to be placed, position of sensors in each facet, and offsets derived from performing extend and retract operations of a robot arm. In another embodiment where the robot includes two arms, the method calibrates the system to compensate for differences derived from using one arm or the other. During manufacturing, the wafers are placed in the different stations using the compensation parameters.
Abstract:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.
Abstract:
A composite oxygen ion transport element (1) that has a layered structure formed by a dense layer (10) to transport oxygen ions and electrons and a porous support layer (12) to provide mechanical support. The dense layer (10) can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer (12) can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped M05Si3-based intermetallic alloy or combinations thereof. The support layer (12) can be provided with a network of non-interconnected pores (14) and each of said pores (14) communicates between opposite surfaces of said support layer (12). Such a support layer (12) can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.
Abstract:
The invention relates to an adaptively controlled resource (180) and method of adaptively controlling resource behavior (180). An adaptively controlled resource (180) is provided having at least one parameter (182) and at least one attribute (208). A controller (200) is in communication with the resource (180) for receiving parameters (182) and an attribute (208). The controller (200) generates at least one output attribute (212) corresponding to the first resource parameter (182). The controller (200) communicates the output attribute (212) to the resource (180) and one of the at least one parameter (182) of the resource (180) is updated such that the behavior of the first resource (180) is modified in regard to the updated parameter.
Abstract:
A human powered watercraft or land vehicle is described herein. A watercraft or land vehicle may have two pedals that reciprocated are in a linear or slightly curved trajectory but not a circular motion. As the two pedals are reciprocated, an output shaft is rotated in either a clockwise or counterclockwise direction when the left pedal is pushed forward or when the right pedal is pushed forward. The output shaft may be connected to a propeller of a watercraft or a land vehicle so as to propel the watercraft or land vehicle forward. The output shaft may receive rotational input through two gears mounted to the output shaft with one-way bearings that enable the output shaft to rotate in the same direction regardless of whether the left pedal or the right pedal is being pushed forward.
Abstract:
A method and apparatus for processing a bevel edge is provided. A substrate is placed in a bevel processing chamber and a passivation layer is formed on the substrate only around a bevel region of the substrate using a passivation plasma confined in a peripheral region of the bevel processing chamber. The substrate may undergo a subsequent semiconductor process, during which the bevel edge region of the substrate is protected by the passivation layer. Alternatively, the passivation layer may be patterned using a patterning plasma formed in an outer peripheral region of the processing chamber, the patterning plasma being confined by increasing plasma confinement. The passivation layer on outer edge portion of the bevel region is removed, while the passivation layer on an inner portion of the bevel region is maintained. The bevel edge of the substrate may be cleaned using the patterned passivation layer as a protective mask.
Abstract:
Methods and systems to optimize wafer placement repeatability in semiconductor manufacturing equipment using a controlled series of wafer movements are provided. In one embodiment, a preliminary station calibration is performed to teach a robot position for each station interfaced to facets of a vacuum transfer module used in semiconductor manufacturing. The method also calibrates the system to obtain compensation parameters that take into account the station where the wafer is to be placed, position of sensors in each facet, and offsets derived from performing extend and retract operations of a robot arm. In another embodiment where the robot includes two arms, the method calibrates the system to compensate for differences derived from using one arm or the other. During manufacturing, the wafers are placed in the different stations using the compensation parameters.
Abstract:
Methods and apparatus for remedying arc-related damage to the substrate during plasma bevel etching. A plasma shield is disposed above the substrate to prevent plasma, which is generated in between two annular grounded plates, from reaching the exposed metallization on the substrate. Additionally or alternatively, a carbon-free fluorinated process source gas may be employed and/or the RF bias power may be ramped up gradually during plasma generation to alleviate arc-related damage during bevel etching. Also additionally or alternatively, helium and/or hydrogen may be added to the process source gas to alleviate arc-related damage during bevel etching.
Abstract:
A method for calculating a process center for a chuck in a processing chamber is provided. The method includes generating pre-processing and post-processing measurement data points, which is perform by measuring thickness of a film substrate at a set of orientations and a set of distances from a geometric center of the substrate. The method also includes comparing the pre-processing and post-processing measurement data points to calculate a set of etch depth numbers. The method further includes generating etch profiles for the set of orientations. The method yet also includes extrapolating a set of radiuses, which is associated with a first etch depth, from the etch profiles. The method yet further includes generating an off-centered plot, which is a graphical representation of the set of radiuses versus the set of orientations. The method more over includes calculating the process center by applying a curve-fitting equation to the off-centered plot.