Abstract:
Embodiments of the invention described herein generally provide methods for forming cobalt silicide layers and metallic cobalt layers by using various deposition processes and annealing processes. In one embodiment, a method for forming a metallic silicide containing material on a substrate is provided which includes forming a metallic silicide material over or on a silicon-containing surface during a vapor deposition process by sequentially depositing a plurality of metallic silicide layers and silyl layers on the substrate, depositing a metallic capping layer over or on the metallic silicide material, heating the substrate during an annealing process, and depositing a metallic contact material over or on the barrier material. In one example, the metallic silicide layers and the metallic capping layer both contain cobalt. The cobalt silicide material may contain a silicon/cobalt atomic ratio of about 1.9 or greater, such as greater than about 2.0, or about 2.2 or greater.
Abstract:
A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
Abstract:
Embodiments of the invention provide processes for depositing a cobalt layer on a barrier layer and subsequently depositing a conductive material, such as copper or a copper alloy, thereon. In one embodiment, a method for depositing materials on a substrate surface is provided which includes forming a barrier layer on a substrate, exposing the substrate to dicobalt hexacarbonyl butylacetylene (CCTBA) and hydrogen to form a cobalt layer on the barrier layer during a vapor deposition process (e.g., CVD or ALD), and depositing a conductive material over the cobalt layer. In some examples, the barrier layer and/or the cobalt layer may be exposed to a gas or a reagent during a treatment process, such as a thermal process, an in situ plasma process, or a remote plasma process.
Abstract:
A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
Abstract:
A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
Abstract:
Methods for depositing ruthenium-containing films are provided herein. In some embodiments, a method of depositing a ruthenium-containing film on a substrate may include depositing a ruthenium-containing film on a substrate using a ruthenium-containing precursor, the deposited ruthenium-containing film having carbon incorporated therein; and exposing the deposited ruthenium-containing film to an oxygen-containing gas to remove at least some of the carbon from the deposited ruthenium-containing film. In some embodiments, the oxygen-containing gas exposed ruthenium-containing film may be annealed in a hydrogen-containing gas to remove at least some oxygen from the ruthenium-containing film. In some embodiments, the deposition, exposure, and annealing may be repeated to deposit the ruthenium-containing film to a desired thickness.
Abstract:
Methods for forming barrier/seed layers for interconnect structures are provided herein. In some embodiments, a method of processing a substrate having an opening formed in a first surface of the substrate, the opening having a sidewall and a bottom surface, the method may include forming a layer comprising manganese (Mn) and at least one of ruthenium (Ru) or cobalt (Co) on the sidewall and bottom surface of the opening; and depositing a conductive material on the layer to fill the opening. In some embodiments, one of ruthenium (Ru) or cobalt (Co) is deposited on the sidewall and bottom surface of the opening. The materials may be deposited by chemical vapor deposition (CVD) or by physical vapor deposition (PVD).
Abstract:
Methods for forming barrier/seed layers for interconnect structures are provided herein. In some embodiments, a method of processing a substrate having an opening formed in a first surface of the substrate, the opening having a sidewall and a bottom surface, the method may include forming a layer comprising manganese (Mn) and at least one of ruthenium (Ru) or cobalt (Co) on the sidewall and bottom surface of the opening; and depositing a conductive material on the layer to fill the opening. In some embodiments, one of ruthenium (Ru) or cobalt (Co) is deposited on the sidewall and bottom surface of the opening. The materials may be deposited by chemical vapor deposition (CVD) or by physical vapor deposition (PVD).
Abstract:
Embodiments of the invention provide processes for depositing a cobalt layer on a barrier layer and subsequently depositing a conductive material, such as copper or a copper alloy, thereon. In one embodiment, a method for depositing materials on a substrate surface is provided which includes forming a barrier layer on a substrate, exposing the substrate to dicobalt hexacarbonyl butylacetylene (CCTBA) and hydrogen to form a cobalt layer on the barrier layer during a vapor deposition process (e.g., CVD or ALD), and depositing a conductive material over the cobalt layer. In some examples, the barrier layer and/or the cobalt layer may be exposed to a gas or a reagent during a treatment process, such as a thermal process, an in situ plasma process, or a remote plasma process.
Abstract:
Metal gate structures and methods for forming thereof are provided herein. In some embodiments, a method for forming a metal gate structure on a substrate having a feature formed in a high k dielectric layer may include depositing a first layer within the feature atop the dielectric layer; depositing a second layer comprising cobalt or nickel within the feature atop the first layer; and depositing a third layer comprising a metal within the feature atop the second layer to fill the feature, wherein at least one of the first or second layers forms a wetting layer to form a nucleation layer for a subsequently deposited layer, wherein one of the first, second, or third layers forms a work function layer, and wherein the third layer forms a gate electrode.