Abstract:
Methods are provided for depositing a stack of film layers for use in vertical gates for 3D memory devices, by depositing a sacrificial nitride film layer at a sacrificial film deposition temperature greater than about 550 °C; depositing an oxide film layer over the nitride film layer, at an oxide deposition temperature of about 600 °C. or greater; repeating the above steps to deposit a film stack having alternating layers of the sacrificial films and the oxide films; forming a plurality of holes in the film stack; and depositing polysilicon in the plurality of holes in the film stack at a polysilicon process temperature of about 700 °C. or greater, wherein the sacrificial film layers and the oxide film layers experience near zero shrinkage during the polysilicon deposition. Flash drive memory devices may also be made by these methods.
Abstract:
Embodiments of the invention generally relate to methods of removing and/or cleaning a substrate surface having different material layers disposed thereon using water vapor plasma treatment. In one embodiment, a method for cleaning a surface of a substrate includes positioning a substrate into a processing chamber, the substrate having a dielectric layer disposed thereon forming openings on the substrate, exposing the dielectric layer disposed on the substrate to water vapor supplied into the chamber to form a plasma in the water vapor, maintaining a process pressure in the chamber at between about 1 Torr and about 120 Torr, and cleaning the contact structure formed on the substrate.
Abstract:
Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer for improved stack defectivity on a substrate is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less; and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater to form the composite amorphous carbon layer.
Abstract:
Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer for improved stack defectivity on a substrate is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less; and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater to form the composite amorphous carbon layer.
Abstract:
A method and structure for the fabrication of semiconductor devices having feature sizes in the range of 90 nm and smaller is provided. In one embodiment of the invention, a method is provided for processing a substrate including depositing an anti-reflective coating layer on a surface of the substrate, depositing an adhesion promotion layer on the anti-reflective coating layer, and depositing a resist material on the adhesion promotion layer. In another embodiment of the invention, a semiconductor substrate structure is provided including a dielectric substrate, an amorphous carbon layer deposited on the dielectric layer, an anti-reflective coating layer deposited on the amorphous carbon layer, an adhesion promotion layer deposited on the anti-reflective coating layer, and a resist material deposited on the adhesion promotion layer.
Abstract:
The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
Abstract:
Methods are provided for forming a structure that includes an air gap In one embodiment, a method is provided for forming a damascene structure compnses depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen -containing matenal, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature defintion in the organic and dielectric constant layer, filling the feature definition with a conductive material, depositing a mask layer on the organic layer, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive matenal.
Abstract:
A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
Abstract:
The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
Abstract:
Methods are provided for depositing amorphous carbon materials. In one aspect, the invention provides a method for processing a substrate including positioning the substrate in a processing chamber, introducing a processing gas into the processing chamber, wherein the processing gas comprises a carrier gas, hydrogen, and one or more precursor compounds, generating a plasma of the processing gas by applying power from a dual-frequency RF source, and depositing an amorphous carbon layer on the substrate.