Abstract:
An embodiment of a method of integrating a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming in a first region of a substrate a channel of a memory device from a semiconducting material overlying a surface of the substrate, the channel connecting a source and a drain of the memory device; forming a charge trapping dielectric stack over the channel adjacent to a plurality of surfaces of the channel, wherein the charge trapping dielectric stack includes a blocking layer on a charge trapping layer over a tunneling layer; and forming a MOS device over a second region of the substrate.
Abstract:
A nonvolatile charge trap memory device and a method to form the same are described. The device includes a channel region having a channel length with crystal plane orientation. The channel region is between a pair of source and drain regions and a gate stack is disposed above the channel region.
Abstract:
In one embodiment, a self-aligned contact (SAC) trench structure (412) is formed through a dielectric layer (410) to expose an active region (404) of a MOS transistor. The SAC trench structure (412) not only exposes the active region (404) for electrical connection but also removes portions of a stress liner (409) over the active region (404). This leaves the stress liner (409) mostly on the sidewall and top of the gate (510) of the MOS transistor. Removing portions of the stress liner (409) over the active region substantially removes the lateral component of the strain imparted by the stress liner (409) on the substrate (402), allowing for improved drive current without substantially degrading a complementary MOS transistor.
Abstract:
A semiconductor devices including non-volatile memones and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride- oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
Abstract:
Scaling a charge trap memory device and the article made thereby. In one embodiment, the charge trap memory device includes a substrate having a source region, a drain region, and a channel region electrically connecting the source and drain. A tunnel dielectric layer is disposed above the substrate over the channel region, and a multi-layer charge-trapping region disposed on the tunnel dielectric layer. The multi-layer charge-trapping region includes a first deuterated layer disposed on the tunnel dielectric layer, a first nitride layer disposed on the first deuterated layer and a second nitride layer disposed above the first nitride layer.
Abstract:
An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
Abstract:
A nonvolatile charge trap memory device is described. The device includes a substrate having a channel region and a pair of source/drain regions. A gate stack is above the substrate over the channel region and between the pair of source/drain regions. The gate stack includes a multi-layer charge-trapping region having a first deuterated layer. The multi-layer charge-trapping region may further include a deuterium-free charge-trapping layer.
Abstract:
In one embodiment, a self-aligned contact (SAC) trench structure (412) is formed through a dielectric layer (410) to expose an active region (404) of a MOS transistor. The SAC trench structure (412) not only exposes the active region (404) for electrical connection but also removes portions of a stress liner (409) over the active region (404). This leaves the stress liner (409) mostly on the sidewall and top of the gate (510) of the MOS transistor. Removing portions of the stress liner (409) over the active region substantially removes the lateral component of the strain imparted by the stress liner (409) on the substrate (402), allowing for improved drive current without substantially degrading a complementary MOS transistor.
Abstract:
A method of scaling a nonvolatile trapped-charge memory device and the device made thereby is provided. In an embodiment, the method includes forming a channel region including polysilicon electrically connecting a source region and a drain region in a substrate. A tunneling layer is formed on the substrate over the channel region by oxidizing the substrate to form an oxide film and nitridizing the oxide film. A multi-layer charge trapping layer including an oxygen-rich first layer and an oxygen-lean second layer is formed on the tunneling layer, and a blocking layer deposited on the multi-layer charge trapping layer. In one embodiment, the method further includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the oxygenlean second layer.
Abstract:
Scaling a nonvolatile trapped-charge memory device and the article made thereby. In an embodiment, scaling includes multiple oxidation and nitridation operations to provide a tunneling layer with a dielectric constant higher than that of a pure silicon dioxide tunneling layer but with a fewer hydrogen and nitrogen traps than a tunneling layer having nitrogen at the substrate interface. In an embodiment, scaling includes forming a charge trapping layer with a non-homogenous oxynitride stoichiometry. In one embodiment the charge trapping layer includes a silicon-rich, oxygen-rich layer and a silicon-rich, oxygen-lean oxynitride layer on the silicon-rich, oxygen-rich layer. In an embodiment, the method for scaling includes a dilute wet oxidation to densify a deposited blocking oxide and to oxidize a portion of the silicon- rich, oxygen-lean oxynitride layer.