Abstract:
A three-dimensional memory device includes conductive structures located over a substrate, an alternating stack of insulating layers and electrically conductive layers formed over the conductive structures, and an array of memory structures formed through the alternating stack. Each of the memory structures includes memory elements located at levels of the electrically conductive layers. A contact region can be formed on the alternating stack. Two-stage contact via cavities having a greater width above a top surface of a respective electrically conductive layer and having a narrower width through the alternating stack can be formed in the contact region. Upper insulating spacers and lower insulating spacers are formed such that annular surfaces of the respective electrically conductive layer are physically exposed. Two-stage contact via structures can provide electrical contact between the electrically conductive layers and the conductive structures.
Abstract:
A layer stack including an alternating stack of insulating layers and sacrificial material layers is formed over a substrate. After formation of memory stack structures, backside trenches are formed through the layer stack. The sacrificial material layers are replaced with electrically conductive layers. Drain select level dielectric isolation structures are formed through drain select level of the stack after formation of the electrically conductive layers. The drain select level dielectric isolation structures laterally separate portions of conductive layers that are employed as drain select level gate electrodes for the memory stack structures.
Abstract:
A semiconductor structure includes a memory-level assembly located over a substrate and including at least one alternating stack and memory stack structures vertically extending through the at least one alternating stack. Each of the at least one an alternating stack includes alternating layers of respective insulating layers and respective electrically conductive layers, and each of the electrically conductive layers in the at least one alternating stack includes a respective opening such that a periphery of a respective spacer dielectric portion located in the opening contacts a sidewall of the respective electrically conductive layers. At least one through-memory-level via structure vertically extends through each of the spacer dielectric portions and the insulating layers.
Abstract:
Split memory cells can be provided within an alternating stack of insulating layers and word lines. At least one lower-select-gate-level electrically conductive layers and/or at least one upper-select-level electrically conductive layers without a split memory cell configuration can be provided by limiting the levels of separator insulator structures within the levels of the word lines. At least one etch stop layer can be formed above at least one lower-select-gate-level spacer material layer. An alternating stack of insulating layers and spacer material layers is formed over the at least one etch stop layer. Separator insulator structures are formed through the alternating stack employing the etch stop layer as a stopping structure. Upper-select-level spacer material layers can be subsequently formed. The spacer material layers and the select level material layers are formed as, or replaced with, electrically conductive layers.
Abstract:
An alternating stack of sacrificial material layers and insulating layers is formed over a substrate. Replacement of sacrificial material layers with electrically conductive layers can be performed employing a subset of openings. A predominant subset of the openings is employed to form memory stack structures therein. A minor subset of the openings is employed as access openings for introducing an etchant to remove the sacrificial material layers to form lateral recesses and to provide a reactant for depositing electrically conductive layers in the lateral recesses. By distributing the access openings across the entirety of the openings and eliminating the need to employ backside trenches for replacement of the sacrificial material layers, the size and lateral extent of backside trenches can be reduced to a level sufficient to accommodate only backside contact via structures.
Abstract:
A method of fabricating a monolithic three dimensional memory structure is provided. The method includes forming a stack of alternating word line (WLL) and dielectric layers (DL) above a substrate (510), forming a source line (514) above the substrate, forming a memory hole extending through the alternating word line and dielectric layers and the source line, and forming a mechanical support element (516a-c) on the substrate adjacent to the memory hole.
Abstract:
A three-dimensional memory device including multiple stack structures can be formed with a joint region electrode, which is an electrode formed at a joint region located near the interface between an upper stack structure and a lower stack structure. A memory stack structure is formed through the multiple stack structures. The joint region electrode laterally surrounds a portion of the memory stack structure in proximity to the interface between different stack structures. The joint region electrode includes a layer portion having a thickness and a collar portion that laterally surrounds the memory stack structure and having a greater vertical extent than the thickness of the layer portion. The increased vertical extent of the collar portion with respect to the vertical extent of the layer portion provides enhanced control of a portion of a semiconductor channel in the memory stack structure located near the interface between different stack structures.
Abstract:
A multi-tier memory device is formed over a substrate such that memory stack structures extend through an alternating stack of insulating layers and electrically conductive layers within each tier. Bit lines are formed between an underlying tier having drain regions over semiconductor channels and an overlying tier having drain regions under semiconductor channel, such that the bit lines are shared between the underlying tier and the overlying tier. Source lines can be formed over each tier in which source regions overlie semiconductor channels and drain regions. If another tier is present above the source lines, the source lines can be shared between two vertically neighboring tiers.
Abstract:
A method of fabricating a memory device is provided. The method includes forming a first alternating stack of insulator layers and spacer material layers over a semiconductor substrate, etching the first alternating stack to expose a single crystalline semiconductor material, forming a first epitaxial semiconductor pedestal on the single crystalline semiconductor material, such that the first epitaxial semiconductor pedestal is in epitaxial alignment with the single crystalline semiconductor material, forming an array of memory stack structures through the first alternating stack, and forming at least one semiconductor device over the first epitaxial semiconductor pedestal.