Abstract:
A method of forming a tantalum-containing layer on a substrate is described. The tantalum-containing layer is formed using a physical vapor deposition technique wherein a magnetic field in conjunction with an electric field function to confine material sputtered from a tantalum-containing target within a reaction zone of a deposition chamber. The electric field is generated by applying a power of at least 8 kilowatts to the tantalum-containing target. The magnetic field is generated from a magnetron including a first magnetic pole of a first magnetic polarity surrounded by a second magnetic pole of a second magnetic polarity opposite the first magnetic polarity. The first magnetic pole preferably has a magnetic flux at least about 30% greater than a magnetic flux of the second magnetic pole. The tantalum-containing layer deposition method is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, an interconnect structure is formed.
Abstract:
A method and apparatus for performing highly ionized and low energy physical vapor deposition (PVD). The pressure is selected to increase the ionization of atoms sputtered from a target and de-energize these ions. The highly ionized, low energy target atoms are more easily attracted to a substrate that is biased.
Abstract:
In conjunction with sputtering a metal, especially copper, into high aspect-ratio holes in a wafer, an oblique ion milling method in which argon ions or other particles having energies in the range of 200 to 1500e V are directed to the wafer at between 10 and 35° to the wafer surface to sputter etch material sputter deposited preferentially on the upper corners of the holes. The milling may be performed in the sputter deposition chamber either simultaneously with the deposition or after it or performed afterwards in a separate milling reactor. A plurality of ion sources arranged around the chamber improve angular uniformity or arranged axially improve radial uniformity or vary the angle of incidence. An annular ion source about the chamber axis allows a plasma current loop. Anode layer ion sources and sources composed of copper are advantageous.
Abstract:
A metal layer (62), especially a metal compound, induces strain into a gate channel (16) of a MOS transistor (60). Compressive strain of over 4GPa is available from sputter deposited TiN. The amount of strain can be controlled at least up to 1 IGPa, for example, by wafer biasing. The compressive strain may induce compressive strain in a PMOS channel when deposited around the channel and induce tensile strain in an NMOS channel when deposited over the channel.
Abstract:
A fabrication method, a product structure, a fabrication method, and a sputtering target for the deposition of a conductive barrier or other liner layer in an interconnect structure. The barrier layer (82) comprises a conductive metal of a refractory noble metal alloy, such as a ruthenium/tantalum alloy, which may be amorphous though it is not require to be so. The barrier layer may be sputtered from a target (90) of similar composition. The barrier and target composition may be chosen from a combination of the refractory metals and the platinum-group metals as well as RuTa. A copper noble seed layer (112) may be formed of an alloy of copper and ruthenium in contact to a barrier layer (70) over the dielectric (66).
Abstract:
A plasma sputter reactor including a target with an annular vault formed in a surface facing the wafer to be sputter coated and having inner and outer sidewalls and a roof thereover. A well is formed at the back of the target between the tubular inner sidewall. A magneton associated with the target includes a stationary annular magnet assembly of one vertical polarity disposed outside of the outer sidewall, a rotatable tubular magnet assembly of the other polarity positioned in the well behind the inner sidewall, and a small unbalanced magnetron rotatable over the roof about the central axis of the target. The lower frame supports the target while the upper frame supports the magnetron, including the magnets adjacent the lower frame. The inner magnet assembly has a cooling water passage passing to the bottom of the inner magnet to inject the cooling water to the bottom of the well. The cooling water is stirred by the rotating roof magnetron and leaves the water bath through inlets formed in the bottom frame but exists from the top frame.
Abstract:
A magnetron sputter reactor having a target that is pulsed with a duty cycle of less than 10% and preferably less than 1% and further having a small magnetron of area less than 20% of the target area rotating about the target center, whereby a very high plasma density is produced during the pulse adjacent to the area of the magnetron. The power pulsing frequency needs to be desynchronized from the rotation frequency so that the magnetron does not overlie the same area of the magnetron during different pulses. Advantageously, the power pulses are delivered above a DC background level sufficient to continue to excite the plasma so that no ignition is required for each pulse.
Abstract:
A plasma chamber in a semiconductor fabrication system improves the uniformity of a high density plasma by optimizing a ratio of RF power from a first coil, surrounding and inductively coupled into the high density plasma, to RF power from a second coil, positioned above a central region and inductively coupled into the high density plasma. It has also been found that an increase in RF power supplied to the second coil positioned above the central region relative to RF power supplied to the first coil surrounding the high density plasma tends to increase the relative density of the plasma toward the center of the high density plasma. It is believed that RF power supplied to the second coil positioned above the central region substrate tends to add more electrons into the central region of the high density plasma to compensate for electrons recombining with plasma ions. A balance can thus be struck between RF power supplied to the first and second coils to increase plasma uniformity in the high density plasma, which may cause an increase in the uniformity of ionization of the sputtered target material atoms by the high density plasma.