Abstract:
The present disclosure provides neuroprotective compounds along with their use in treating disease such as Parkinson's disease (PD). The compounds can be used as inhibitors for Parthanatos Associated AIF (apoptosis-inducing factor) Nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF).
Abstract:
Compounds with the following structures and their analogs are provided. Compositions that include these structures can be used to inhibit glucose transporters and stop or decrease the proliferation of cancer, treat possible organ rejection and treat autoimmune disease.
Abstract:
Provided herein are methods of treating a disease, such as Parkinson's disease, that is due to increased poly [ADP-ribose] polymerase 1 (PARP-1) activation, by inhibiting macrophage migration inhibitory factor (MIF) nuclease activity.
Abstract:
A compound of Formula (I), and its analogs are provided. Compositions that include Formula I can be used to inhibit human equilibrative nucleoside transporter 1, increase adenosine signaling and produce effects that include increasing antiviral activity, increasing antiparasitic activity, increasing alcohol tolerance, decreasing pain protecting from ischemia as well as many other conditions.
Abstract:
The present disclosure provides macrocyclic compounds inspired by the immunophilin ligand family of natural products FK506 and rapamycin. The generation of a Rapafucin library of macrocyles that contain FK506 and rapamycin binding domains should have great potential as new leads for developing drugs to be used for treating diseases.
Abstract:
Itraconazole, a widely used antifungal drug, has been found to possess potent anti-angiogenic and anti-hedgehog activities, exhibiting promising antitumor activity in several human clinical studies. The wider use of itraconazole in the treatment of cancer, however, has been limited by its potent inhibition of the drug metabolic enzyme CYP3A4 which causes drug-drug interactions. In an effort to eliminate the CYP3A4 inhibition of itraconazole while retaining its anti-angiogenic activity, we synthesized a series of itraconazole derivatives. The newly synthesized analogs of itraconazole were evaluated for their cytotoxicity against human umbilical vein endothelial cells (HUVEC) and their inhibitory activity against CYP3A4 enzyme.
Abstract:
Described herein are methods of inhibiting angiogenesis, and treating or preventing a disease or disorder (or symptoms thereof) associated with angiogenesis, wherein an anti-angiogenesis compound is administered to a subject.
Abstract:
Compounds, compositions, kits and methods for modulating hedgehog pathway activity, and treating conditions related to abnormal or aberrant hedgehog pathway activity, are disclosed.