Abstract:
A method includes combining a coating material and an uncoated particulate core material in a solution having a selected ionic strength. The selected ionic strength promotes coating of the uncoated particulate core material with the coating material to form coated particles; and the coated particles can be collected after formation. The coating material has a higher electrical conductivity than the core material.
Abstract:
The present invention relates to various methods of detecting DNA methylation and defected DNA. In one embodiment, the invention provides a nanosensor bound to a probe that is complementary to a DNA methylation sequence.
Abstract:
The present invention relates to various methods of sensitizing and modifying nanosensor platforms. In one embodiment, the present invention provides a method of increasing sensitivity by inhibiting oxidation of one or more 1,4-hydroquinone (HQ) molecules, functionalizing the nanosensor by using one or more diazonium molecules, creating one or more oxidized carbon groups on the nanosensor, and/or depositing one or more metal clusters on the nanosensor.
Abstract:
Disclosed are fully transparent nanowire transistors having high field-effect mobilities. The fully transparent nanowire transistors disclosed herein include one or more nanowires, a gate dielectric prepared from a transparent inorganic or organic material, and transparent source, drain, and gate contacts fabricated on a transparent substrate. The fully transparent nanowire transistors disclosed herein also can be mechanically flexible.
Abstract:
A method of separating and extracting carbon nanotubes, the method includes introducing the carbon nanotubes into a two-phase system that includes a first component and a second component, the first component being different from the second component. The method includes introducing a chemical agent into the two-phase system, mixing the chemical agent and the carbon nanotubes in the two-phase system, removing the first component to extract a first portion of the carbon nanotubes contained in the first component after the mixing, replenishing the two-phase system with fresh first component, and extracting a second portion of the carbon nanotubes contained in the fresh first component. A bandgap of the carbon nanotubes in the first portion is different from the bandgap of the carbon nanotubes in the second portion.
Abstract:
The present invention describes microfluidics being employed to achieve multiplex surface functionalization of nanosensor chips by selectively delivering probe molecules to individual nanosensors in an array, and microfluidics being employed to achieve delivery of a solution containing multiple analytes over individual nanosensors in an array, where each nanosensor was previously configured with a specific capture molecule.
Abstract:
A method of fabricating a thin film transistor, the method includes applying a first ink containing metallic particles to a first screen mask, and using the first screen mask to deposit the first ink to form a source electrode and a drain electrode on a substrate bearing a layer of carbon nanotubes (CNT). The method includes applying a second ink containing a dielectric material to a second screen mask, and using the second screen mask to deposit the second ink to form a layer of the dielectric material on the layer of CNT between the source electrode and the drain electrode. The method includes applying a third ink containing metallic particles to a third screen mask, and using the third screen mask to deposit the first ink to form a metallic gate electrode on the layer of the dielectric material to form the thin film transistor.
Abstract:
Hybrid silicon-carbon nanostructured electrodes are fabricated by forming a suspension including carbon nanostructures and a fluid, disposing the suspension on a substrate, removing at least some of the fluid from the suspension to form a carbon nanostructure layer on the substrate, and sputtering a layer of silicon over the carbon nanostructure layer to form the hybrid silicon-carbon nanostructured electrode. Sputtering the layer of silicon facilitates fabrication of large dimension electrodes at room temperature. The hybrid silicon-carbon nanostructured electrode may be used as an anode in a rechargeable battery, such as a lithium ion battery.
Abstract:
Nanowires are formed in a process including fluidized bed catalytic vapor deposition. The process may include contacting a gas-phase precursor including a metal or a semiconductor with a catalyst in a reaction chamber under conditions suitable for growth of nanowires including the metal or the semiconductor. The reaction chamber includes a support. The support can be, for example, a particulate support or a product vessel in the fluidized bed reactor. Nanowires are formed on the support in response to interaction between the gas-phase precursor and the catalyst. The nanowire-laden support is removed from the reaction chamber, and the nanowires are separated from the support. An anode or a lithium-ion battery may include nanowires formed in a fluidized bed reactor.
Abstract:
An asymmetric electrochemical capacitor including an anode, a cathode, and an electrolyte between the anode and the cathode. The anode includes manganese dioxide (MnO 2 ) nanowires and single-walled carbon nanotubes. The cathode includes indium oxide (In 2 O 3 ) nanowires and single-walled carbon nanotubes. The asymmetrical electrochemical capacitor can be fabricated by forming a first film including manganese dioxide nanowires and single-walled carbon nanotubes, forming a second film including indium oxide nanowires and single-walled carbon nanotubes, and providing an electrolyte between the first film and the second film such that the electrolyte is in contact with the first film and the second film.
Abstract translation:在阳极和阴极之间包括阳极,阴极和电解质的不对称电化学电容器。 阳极包括二氧化锰(MnO 2)纳米线和单壁碳纳米管。 阴极包括氧化铟(In 2 O 3)纳米线和单壁碳纳米管。 可以通过形成包括二氧化锰纳米线和单壁碳纳米管的第一膜,形成包括氧化铟纳米线和单壁碳纳米管的第二膜,并且在第一膜和第二膜之间提供电解质来制造不对称电化学电容器 使得电解质与第一膜和第二膜接触。