Abstract:
A microfluidic system is presented that includes a cartridge, a container, and a lid for the container. The cartridge includes a plurality of microfluidic channels coupled to one or more chambers. The container holds dry chemicals and includes a housing with a first opening and a second opening smaller than the first opening. The container is designed to be inserted into an opening of the cartridge, such that the container is independently secured within the opening. The insertion of the container allows for the container to be fluidically coupled with a microfluidic channel of the plurality of microfluidic channels via the second opening. The lid includes a column that extends from the lid into the container.
Abstract:
Devices, systems, and methods for detecting molecules of interest within a collected sample are described herein. In certain embodiments, self-contained sample analysis systems are disclosed, which include a reusable reader component, a disposable cartridge component, and a disposable sample collection component. The reader component may communicate with a remote computing device for the digital transmission of test protocols and test results. In various disclosed embodiments, the systems, components, and methods are configured to identify the presence, absence, and/or quantity of particular nucleic acids, proteins, or other analytes of interest, for example, in order to test for the presence of one or more pathogens or contaminants in a sample.
Abstract:
A microfluidic system is presented that includes a cartridge and a container. The cartridge includes a plurality of microfluidic channels coupled to one or more chambers. The container holds dry chemicals and includes a housing with a first opening and a second opening smaller than the first opening. The container is designed to be inserted into an opening of the cartridge, such that the container is independently secured within the opening. The insertion of the container allows for the container to be fluidically coupled with a microfluidic channel of the plurality of microfluidic channels via the second opening.
Abstract:
A blister assembly comprises at least one collapsible blister adapted, as it is collapsed, to eject a liquid contained therein. The blister assembly comprises a first layer (130) having at least one blister chamber (150) and a second layer (131) sealed to the first layer at least around a periphery of the at least one blister chamber such that a liquid is contained between the first layer and the second layer. The seal between the first and second layers comprises a first planar portion having a first peel strength and a second planar portion having a second peel strength, wherein the first peel strength is greater than the second peel strength, such that when pressure is applied to the blister, the second portion of the seal breaks to release the liquid contained within the chamber into the liquid inlet. The blister assembly further comprises at least one discontinuity (142) formed in the first and second layers in the region of the first portion of the seal, such that a shear force is required to delaminate the first and second layers in that region.
Abstract:
Ein Behälter zur Aufnahme und Abgabe einer Substanz umfasst ein Glasröhrchen (10), einen im Glasröhrchen (10) dicht gleitend verstellbaren Glasstempel (20) und eine einseitig geschlossene Glashülse (30), in der das Glasröhrchen (10) aufgenommen ist. Die Glashülse (30) ist kürzer als das Glasröhrchen (10), so dass das Glasröhrchen (10) aus der Glashülse (30) herausragt. Der Glasstempel (20) ist länger als das Glasröhrchen (10) und ragt am ausserhalb der Glashülse (30) befindlichen Ende des Glasröhrchens (10) heraus. Der Glasstempel (20) füllt das Glasröhrchen (10) nicht vollständig aus, so dass im Bereich des innerhalb der Glashülse (30) befindlichen Endes des Glasröhrchens (10) eine Substanzkammer (11) verbleibt.
Abstract:
A method of analysing a skin-print provided on a first surface of an optically transparent substrate. The method comprises the steps of exposing the skin-print on the first surface of the optically transparent substrate to one or more reagents selected to bind with one or more metabolites present in the skin-print; transmitting electromagnetic radiation onto the skin-print through the optically transparent substrate using a radiation source to thereby produce an optical signal of said one or more reagents and/or said one or more metabolites; and detecting an optical image of the optical signal through the optically transparent substrate using a sensor. Also a skin-print analysis apparatus and a reagent cartridge for use in carrying out the method.
Abstract:
A microfluidic product pouch assembly may be used in a microfluidic chip. The microfluidic product pouch may include a pouch surrounding an inner chamber and having a rupturing portion and an inner membrane positioned within the inner chamber. The inner membrane may separate the inner chamber into a first cavity and a second cavity. A reagent may be positioned within the first cavity and/or the second cavity. The microfluidic product pouch assembly may also include a rupturing structure. The rupturing structure may be configured to selectively break the rupturing portion of the microfluidic product pouch.
Abstract:
An apparatus configured for mixing the contents of one or more fluid containers includes a fluid container support platform configured to hold one or more fluid containers. The fluid container support platform is configured to index the container to one or more specified locations and to be moved in an orbital path about an orbital center independently of the rotation about the central axis of rotation. The apparatus further includes an indexing drive system configured to effect indexing movement of the container support platform and a vortex drive system configured to effect powered orbital movement of the container support platform about the orbital center. An evaporation limiting insert placed within containers reduces exposure of the fluid contents of the container to atmospheric air, thereby reducing susceptibility of the fluid contents to evaporation.
Abstract:
In some aspects, a keyed cap for a container is provided. Furthermore, in some aspects, a keyed container device including a container and the keyed cap for the container is also provided. Still further, in some aspects, a keyed containing system including a container, keyed cap for the container, and an electronic device having a keying element that is adapted to mate or otherwise fit with a specific keying element on the keyed cap. If a keyed cap has a keying element that does not correctly correspond to a specific keying element on an electronic device, then the keyed cap will not properly mate with the keying element on the electronic device. For example, the two keying elements that do not match may not fit sufficiently far enough within each other to permit the piercing member on the electronic device to reach a septum on the cap.