Abstract:
본 발명은 캐니스터형 진공청소기에 관한 것으로서, 상세하게는 본체 또는 흡입노즐(15)의 방향전환이 보다 용이하게 이루어질 수 있는 캐니스터형 진공청소기에 관한 것이다. 이러한 목적을 달성하기 위한 본 발명은, 본체(10)와;상기 본체(10)에 회동가능하게 마련되고 상기 본체(10)를 지지하는 바퀴부재(100)를 포함하되, 상기 바퀴부재(100)는 상기 본체(100)에 마련되는 메인회전부재(111)과; 상기 메인회전부재(111)의 회동방향과 다른 회동방향으로 회동할 수 있도록 상기 메인회전부재(111)에 회동가능하게 마련되는 보조회전부재(112)를 포함하는 것을 특징으로 하는 캐니스터형 진공청소기를 제공한다.
Abstract:
L'invention concerne une roue sphérique destinée à mouvoir un véhicule et un véhicule mettant en œuvre la roue. La roue (10) comprend deux calottes (15, 16) dont la surface suit la surface sphérique de la roue (10), les calottes (15, 16) étant articulées chacune au moyen d'une liaison pivot (19, 20) par rapport à un arbre. La roue (10) comprend en outre deux roulettes (28, 29) chacune disposée dans une ouverture de chacune des calottes (15, 16), l'ouverture étant centrée autour de l'axe (21, 22) de la liaison pivot correspondante (19, 20), chaque roulette (28, 29), étant disposée dans le prolongement de la liaison pivot (19, 20) de la calotte considérée (15, 16). Chaque roulette (28, 29) assure un roulement au niveau de la surface sphérique. Des rayons S de l'ouverture de chaque calotte (15, 6) et r de la roulette correspondante (28, 29) sont définis de façon à sensiblement équilibrer des efforts nécessaires à entrainer une calotte (15, 16) et la roulette correspondante (28, 29) lorsque la roue (10) passe d'un appui au sol sur une calotte (15, 16) au bord de l'ouverture à un appui au sol sur la roulette correspondante (28, 29).
Abstract:
The present application provides a mobile welder (100) that does not rely exclusively on a track to define the path of the welder (180). The system (100) is adapted to move along a work piece (W), the mobile welder including a chassis (120) supporting a motor assembly, a travel assembly (140) attached to the chassis (120) and adapted to support the chassis (120) over a portion of the work piece (W), wherein the motor is coupled to the travel assembly (140) to selectively cause the chassis (120) to move relative to the work piece (W); a controller connected to the motor assembly to control movement of the chassis (120) relative to the work piece (W), a chassis holder (130) connected to the chassis (120), the chassis holder (130) being adapted to provide a force holding the chassis (130) a selected distance from the work piece (W); and a welder (180) supported on the chassis (130), the welder including an implement (185) adapted to perform a welding operation, wherein the implement (185) is supported on the chassis (120) at a location where the implement (185) and the chassis (120) define an uninterrupted line of sight from the implement to the work piece (W), wherein the chassis holder (130) is spaced from the line of sight a distance sufficient to prevent the chassis holder (130) from interfering with the welding operation.
Abstract:
The present invention pertains to an integrated motor-gear drive unit, for example an in-wheel motor, for transmitting rotational movement from a motor output shaft with cycloidal reduction to an outer rotatable body; the integrated motor-gear drive unit comprising; a mounting carrier body (3) and a secondary carrier body (2), wherein the mounting carrier body (3) and the secondary carrier body (2) are structurally connected by at least two carrier pin devices (4,11) forming a combined carrier body (2,3,4,11); an outer rotatable body (1) rotatably supported on the mounting carrier body (3) and on the secondary carrier body (2); a motor (5) and a rotatable motor output shaft (6m), at least one cycloidal gear disc (10) and an eccentric body (8), wherein the eccentric body (8) is rotatably supporting the cycloidal gear disc (10) and wherein the motor output shaft (6m) is arranged for rotating the eccentric body (8) within the cycloidal gear disc (10). The invention also pertains to a device to which such a unit is connected.
Abstract:
A portable device to drill holes has a platform. A plurality of wheel sets is coupled to the platform. A drive system is used for driving the plurality of wheels. An attachment mechanism is positioned on an underside of the platform for securing the device to a surface. A control board is used for controlling the operation of the device. A drill assembly is coupled to the platform. A drill feed assembly is coupled to the drill assembly for raising and lowering the drill spindle assembly. A drive table is used for positioning the drill assembly in an XY plane. A power supply is used for powering the device. An antenna is coupled to the control board for sending location information and receiving drill locations. Sensors are used for finding drill locations.
Abstract:
The present invention pertains to an integrated motor-gear drive unit, for example an in-wheel motor, for transmitting rotational movement from a motor output shaft with cycloidal reduction to an outer rotatable body; the integrated motor-gear drive unit comprising; a mounting carrier body (3) and a secondary carrier body (2), wherein the mounting carrier body (3) and the secondary carrier body (2) are structurally connected by at least two carrier pin devices (4,11) forming a combined carrier body (2,3,4,11); an outer rotatable body (1) rotatably supported on the mounting carrier body (3) and on the secondary carrier body (2); a motor (5) and a rotatable motor output shaft (6m), at least one cycloidal gear disc (10) and an eccentric body (8), wherein the eccentric body (8) is rotatably supporting the cycloidal gear disc (10) and wherein the motor output shaft (6m) is arranged for rotating the eccentric body (8) within the cycloidal gear disc (10). The invention also pertains to a device to which such a unit is connected.
Abstract:
L'invention concerne une roue sphérique (10) destinée à mouvoir un véhicule et un véhicule mettant en œuvre la roue, la roue (10) étant motorisée en rotation par un arbre (12) pouvant tourner autour d'un axe (14). Selon l'invention, la roue (10) comprend deux calottes (15, 16) dont la surface suit la surface sphérique de la roue (12) et limitées chacune par un plan (17, 8). Les calottes (15, 16) sont articulées chacune au moyen d'une liaison pivot par rapport à l'arbre (12), un axe (21, 22) de chacune des liaisons pivot étant perpendiculaire au plan (17, 18) de la calotte (15, 16) considérée. Les plans (17, 18) limitant les deux calottes (15, 16) sont sécants.