Abstract:
A method of synthesizing and reacting compounds in a cyclone reactor (10) is disclosed and described. A liquid carrier can be provided which can include solid catalyst particles, liquid catalysts, and/or liquid reactants. The liquid carrier can be formed into a swirl layer (38) within the cyclone reactor (10). A reactant composition including at least one reactant can also be injected through at least a portion of the swirl layer (38) such that at least a portion of the reactant is converted to a reaction product. The cyclone reactor (10) allows for improved contact of reactants and catalyst, with fine temperature control, thus increasing reaction yields and selectivity.
Abstract:
A system and process are provided for converting a hydrocarbon gas to a reformed gas containing hydrogen and carbon monoxide. In accordance with a first embodiment, the system includes a primary combustor, compressor and power turbine. The process is practiced by compressing a feed air in the primary compressor to produce a primary air. The primary air is fed with a primary hydrocarbon gas to the primary combustor, producing a reformed gas that drives the primary power turbine. The primary power turbine is linked to the primary compressor, compressing the feed air in an energy self-sufficient manner. In a second embodiment, the system of the first embodiment further includes a secondary combustor, compressor and power turbine. The process is practiced in the same manner as the first embodiment, producing the reformed gas and driving the primary power turbine and compressor. A portion of the primary air is also fed with a secondary hydrocarbon gas to the secondary combustor, producing an off-gas that drives the secondary power turbine and compressor to compress a gas in an energy self-sufficient manner. In a third embodiment, the system is substantially the same as the second embodiment, but reconfigures the compressors and power turbines and further includes an auxiliary secondary power turbine. The process is practiced in the same manner as the first embodiment, producing the reformed gas and driving the primary power turbine and compressor. The off-gas is produced in the same manner as the second embodiment to drive the secondary power turbine, but the secondary power turbine drives an auxiliary primary compressor, compressing the feed air ahead of the primary compressor in an energy self-sufficient manner. The off-gas further drives the auxiliary secondary power turbine to provide additional power for alternate power users.
Abstract:
Techniques, systems, apparatus and material are disclosed for regeneration or recycling of carbon substances into renewable fuel and materials. In one aspect, a method of recycling carbon to produce a renewable fuel can include harvesting carbon donors, such as carbon dioxide (CO2), emitted from an agricultural process. Hydrogen donors, such as from biomass waste, can be dissociated under an anaerobic reaction to produce hydrogen. The harvested carbon dioxide can be reacted with the waste-produced hydrogen under pressure and temperature to generate a renewable fuel, such as methanol fuel.
Abstract:
A system and process are provided for converting a light hydrocarbon gas to a synthetic heavier hydrocarbon liquid. The system includes an autothermal reformer, a Fischer-Tropsch reactor and a Brayton cycle that are structurally and functionally integrated. In the practice of the process, a mixture of a hydrocarbon feed gas, a compressed air feed and process steam is fed to the autothermal reformer to produce a synthesis gas. The synthesis gas is fed to the Fischer-Tropsch reactor where it is catalytically reacted to produce heavy hydrocarbons. The outlet from the Fischer-Tropsch reactor is separated into water, a low heating value tail gas, and the desired hydrocarbon liquid product. The water is pressurized and heated to generate process steam. The tail gas is heated and fed with compressed air and steam to the Brayton cycle having a combustor and a series of power turbines and compressors. The tail gas and air feed are burned in the combustor to produce a combustion gas that is used to drive a power turbine linked by a shaft to an air compressor, thereby driving the air compressor. The system further includes a plurality of heat exchangers that enable heat to be recovered from the outlet of the autothermal reformer. The recovered heat is used to make the process steam as well as to preheat the hydrocarbon feed gas before it is fed to the autothermal reformer, preheat the synthesis gas before it is fed to the Fischer-Tropsch reactor and preheat the tail gas before it is fed to the combustor.
Abstract:
Herein disclosed is a method of producing synthesis gas from carbonaceous material, the method comprising: (a) providing a mixture comprising carbonaceous material and a liquid medium; (b) subjecting the mixture to high shear under gasification conditions whereby a high shear-treated stream comprising synthesis gas is produced; and (c) separating a product comprising synthesis gas from the high shear-treated stream. Herein also disclosed is a method for producing a liquid product. The method comprises forming a dispersion comprising gas bubbles dispersed in a liquid phase in a high shear device, wherein the average gas bubble diameter is less than about 1.5 µm; contacting the dispersion with a multifunctional catalyst to form the liquid product; and recovering the liquid product. In an embodiment, the liquid product is selected from the group consisting of C2+ hydrocarbons, C2+ oxygenates, and combinations thereof.
Abstract:
A process is provided for treating a liquid effluent from a gas to liquid conversion reactor. A synthesis gas is initially converted to a liquid hydrocarbon phase in the gas to liquid conversion reactor. The liquid hydrocarbon phase includes a heavier liquid paraffinic wax compound and a lighter liquid paraffinic compound. The liquid hydrocarbon phase is discharged from the gas to liquid conversion reactor in a reactor effluent and an abrasive solid particle medium is entrained in the reactor effluent to form a fluidizable mixture. The reactor effluent is conveyed past a heat transfer surface which is cooler than the reactor effluent. The fluidizable mixture is contacted with the heat transfer surface and the liquid hydrocarbon phase is cooled to a temperature below the melting point of the heavier liquid paraffinic wax compound. Consequently, the heavier liquid paraffinic wax compound is converted to a plurality of unconsolidated solid wax particles. A slurry is formed from the plurality of unconsolidated solid wax particles and the remaining lighter liquid paraffinic compound.
Abstract:
Le réacteur (10) de méthanation pour faire réagir du dihydrogène avec au moins un composé à base de carbone et produire du méthane, qui comporte : - un corps creux (105) configuré pour recevoir un lit fluidisé de particules catalytiques (106) et comportant une entrée (110) de chaque composé à base de carbone et du dihydrogène et - une sortie (115) de méthane et d'eau, caractérisé en ce qu'il comporte, de plus, une entrée (120) d'injection d'eau de refroidissement en phase liquide dans le lit fluidisé. Dans des modes de réalisation, chaque composé à base de carbone est un gaz, le réacteur comportant au moins une buse d'injection d'eau et au moins une buse d'injection d'un gaz comportant le gaz à base de carbone et du dihydrogène, au moins une buse d'injection d'eau étant positionnée en dessous d'au moins une buse d'injection du gaz. Dans des modes de réalisation, le débit d'eau introduit dans le corps creux est fonction de la température mesurée dans le réacteur.
Abstract:
Techniques, systems, apparatus and material are disclosed for regeneration or recycling of carbon substances into renewable fuel and materials. In one aspect, a method of recycling carbon to produce a renewable fuel can include harvesting carbon donors, such as carbon dioxide (CO2), emitted from an agricultural process. Hydrogen donors, such as from biomass waste, can be dissociated under an anaerobic reaction to produce hydrogen. The harvested carbon dioxide can be reacted with the waste-produced hydrogen under pressure and temperature to generate a renewable fuel, such as methanol fuel.
Abstract:
The process of the invention comprises feeding gaseous reactants into a slurry bed of particles suspended in a liquid. The gaseous reactants (13) react in the slurry bed (16), to form liquid and, optionally, gaseous products. The liquid product forms, together with the suspension liquid, a liquid phase of the slurry bed (16). Any gaseous product and unreacted gaseous reactants disengage from the slurry bed, and pass upwardly, together with any entrained solid particles and liquid phase, as a gas phase into a head space (17) above the slurry bed (16). The gas phase is subjected to distillation and, optionally, washing in the head space, to separate any entrained solid particles and liquid phase from the gas phase. Any separated entrained solid particles and, optionally, liquid phase is returned to the slurry bed. The treated gas phase is withdrawn (44, 46) from the head space.