Abstract:
L'invention concerne un procédé d'estimation du couple de pertes par pompage durant une phase de transition totale d'un mode thermique à un mode électrique ou inversement d'un groupe motopropulseur hybride (31) comprenant un moteur thermique (32) et une machine électrique (37), caractérisé en ce qu'il comprend les étapes de : -Détermination du régime moteur courant, -Déterminer l'Avance ouverture Admission courante, -Déterminer le Retard fermeture échappement courant, -Déterminer la Pression Admission courante, -Estimation du couple de pertes par pompage courant à partir d'une relation linéaire établissant ledit couple de perte moteur en fonction de la pression d'admission, au régime moteur, Avance Ouverture Admission et Retard fermeture échappement déterminé.
Abstract:
An air-fuel ratio control apparatus includes a learning unit (S116) for learning amounts of divergence of a correction amount from a reference value thereof respectively as to a plurality of set lift amount regions as divergence amount learning values (GkIg, Gksm), a correction unit (S102, S104, SIlO5 S115) for calculating a divergence amount correction value and correcting a fuel injection amount command value, and a reflection unit (S210, S211, S314) for reflecting a learning result of the divergence amount learning value of a specific one of the plurality of the set lift amount regions on the divergence amount learning value of another one of the lift amount regions when there is a history indicating that the divergence amount learning value of the specific one of the lift amount regions has been learned and there is no history indicating that the divergence amount learning value of that another one of the lift amount regions has been learned.
Abstract:
An air-fuel ratio control apparatus includes a learning unit (S116) for learning amounts of divergence of a correction amount from a reference value thereof respectively as to a plurality of set lift amount regions as divergence amount learning values (GkIg, Gksm), a correction unit (S102, S104, SIlO5 S115) for calculating a divergence amount correction value and correcting a fuel injection amount command value, and a reflection unit (S210, S211, S314) for reflecting a learning result of the divergence amount learning value of a specific one of the plurality of the set lift amount regions on the divergence amount learning value of another one of the lift amount regions when there is a history indicating that the divergence amount learning value of the specific one of the lift amount regions has been learned and there is no history indicating that the divergence amount learning value of that another one of the lift amount regions has been learned.
Abstract:
A target engine torque (dTE) after an environmental correction is calculated by interpolating it between an environmentally corrected maximum engine torque (temax#) and an environmentally corrected minimum engine torque (temin#) such that a ratio (k) of a nominal target engine torque between a nominal maximum engine torque and a nominal minimum engine torque under a predetermined environmental condition becomes essentially equal to a ratio of the target engine torque (dTE) between the environmentally corrected maximum engine torque (temax#) and the environmentally corrected minimum engine torque (temin#). The environmentally corrected maximum engine torque (temax#) is obtained by multiplying the nominal maximum engine torque (temaxb) and a correction coefficient (Ke) according to the environmental condition together.
Abstract:
Es wird beschrieben ein Verfahren zur kennfeldbasierten Gewinnung von Werten für mindestens einen Steuerparameter einer Anlage, insbesondere einer Brennkraftmaschine, bei dem in einem Kennfeld (4) abhängig von Betriebsparametern der Anlage über einen Betriebsparameterbereich Stützstellen für den Steuerparameter definiert sind, die jeweils einen Wert für den Steuerparameter liefern, der im Kennfeld abgedeckte Betriebsparameterbereich in einen ersten und einen zweiten Teilbereich unterteilt ist, der jeweils mehrere der Stützstellen aufweist, und bei Erreichen einer Grenze des ersten Teilbereiches der Wert für den Steuerparameter durch eine Extrapolation gewonnen wird, bevor der Wert für den Steuerparameter durch Zugriff auf Stützstellen des zweiten Teilbereichs gewonnen wird.
Abstract:
The invention concerns a method for determining an internal combustion engine functioning parameter on the basis of three control parameters (N, P, lambda ) of said engine, characterised in that it consists in: producing a first map (C1) of the functioning parameter ( alpha ) on the basis of the other two control parameters (N, P), the third control parameter ( lambda ) being fixed at a first value; producing a second map (C2) of the functioning parameter ( alpha ) on the basis of the same two control parameters (N, P), the third control parameter ( lambda ) being fixed at a second value; establishing a relationship f( lambda ) between the first functioning parameter ( alpha ) and the third control parameter ( lambda ) over the whole range of variation of said parameter in at least one specific operating point (N, P); applying said relationship to determine the functioning parameter ( alpha ) on the basis of the three control parameters (N, P lambda ) in all the operating points of the engine.
Abstract:
A control and regulation device for technical processes uses knowledge-based control rules for selected process data. The device calculates control or regulation values for the remaining process states by means of a constant mathematical function that interconnects knowledge-based control rules, creating as by non-linear interpolation control rules for all process states, n being the number of input values characteristic of a process state.
Abstract:
Ein Steuergerät (SG) zum Steuern einer Phasenlage einer ersten Nockenwelle einer Verbrennungskraftmaschine weist einen ersten Kennfeldgeber (KG1) zum Ermitteln einer dynamischen Soll-Phasenlage (dSP1) der ersten Nockenwelle auf und einen zweiten Kennfeldgeber (KG2) zum Ermitteln einer statischen Soll-Phasenlage (sSP1) der ersten Nockenwelle. Das Steuergerät (SG) weist außerdem einen ersten Interpolator (IP1) zum Ermitteln einer korrigierten Soll-Phasenlage (kSP1) der ersten Nockenwelle auf Grundlage der von dem ersten Kennfeldgeber (KG1) ermittelten dynamischen Soll-Phasenlage (dSP1) der ersten Nockenwelle und der von dem zweiten Kennfeldgeber (KG2) ermittelten statischen Soll-Phasenlage (sSP1) der ersten Nockenwelle auf.
Abstract:
A control apparatus for an internal combustion engine includes an in- cylinder pressure sensor (34) for detecting an in-cylinder pressure (P, 100). In-cylinder heat release amount data is calculated (102) based on in-cylinder pressure data synchronized with the crank angle that is sampled using the in-cylinder pressure sensor (34). If the number of items of the heat release amount data that are located in a combustion period identified using the heat release amount data is two or more (104), the control apparatus determines that the in-cylinder pressure data that is sampled in synchronization with the crank angle is reliable (106) and the engine can be controlled accordingly.