Abstract:
A method and apparatus are provided for transmission/reception of signals between automatic test equipment (ATE) and a device under test (DUT). A probe card has a plurality of associated proximate active probe integrated circuits (APIC) connected to a plurality of probes. Each APIC interfaces with one or more test interface points on the DUT through probes. Each APIC receives and processes signals communicated between the ATE and the DUT. Low information content signals transmitted from the ATE are processed into high information content signals for transmission to the probe immediately adjacent the APIC, and high information content or time critical signals received by the APIC from the DUT are transmitted as low information content signals to the ATE. Because the APIC is immediately adjacent the probe there is minimum loss or distortion of the information in the signal from the DUT.
Abstract:
In one embodiment, the present invention provides a platform of hardware and/or software that enables the complete access and reliable testing of multiple integrated circuit (IC) devices within a package. This platform may include a testing component (e.g., test circuits, test pads, shared pads, etc.), one or more probe cards and related hardware, wafer probe programs, load board and related hardware of external test equipment, and software and routines for final test programs.
Abstract:
A technique for testing interconnections between electronic components is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for testing interconnections between electronic components. The method may comprise sending a command from a test controller to a plurality of electronic components via a first communication path, wherein the command comprises an instruction for one or more of the plurality of electronic components to transmit a recognizable data pattern to the test controller via a second communication path. The method may also comprise isolating a failure in the first communication path based upon the recognizable data pattern not being transmitted to the test controller via the second communication path.
Abstract:
Systems and methods consistent with principles of the present invention allow contactless measuring of various kinds of electrical activity within an integrated circuit. The invention can be used for high-bandwidth, at speed testing of various devices on a wafer during the various stages of device processing, or on packaged parts at the end of the manufacturing cycle. Power is applied to the test circuit using conventional mechanical probes or other means, such as CW laser light applied to a photoreceiver provided on the test circuit. The electrical test signal is introduced into the test circuit by stimulating the circuit using a contactless method, such as by directing the output of one or more modelocked lasers onto high-speed receivers on the circuit, or by using a high-speed pulsed diode laser. The electrical activity within the circuit in response to the test signal is sensed by a receiver element, such as a time-resolved photon counting detector, a static emission camera system, or by an active laser probing system. The collected information is used for a variety of purposes, including manufacturing process monitoring, new process qualification, and model verification.
Abstract:
The invention relates to a method of manufacturing an integrated circuit (404) on a die (402), wherein the die (402) forms a detachable part of a wafer (401) comprising a plurality of dies that are separated from each other by dicing lanes (403). The method comprises a step of applying a metallization pattern (407) in at least one of the dicing lanes (403) to form a communication bus comprising at least one communication bus circuit (405) that is part of the integrated circuit (404). Said step is followed by a step wherein the integrated circuit (404) is tested according to a predetermined testing method which uses the communication bus circuit (405) to communicate with the integrated circuit (404). This step is followed by a next step wherein the die (402) is detached from the wafer (401). The communication bus circuit (405) is designed so as to communicate in a wafer test mode as well as in a functional mode. During the testing of the integrated circuit (404), it communicates in the wafer test mode. The invention also relates to an integrated circuit (404) obtained by means of the manufacturing method, a wafer (401) comprising an integrated circuit (404) obtained by means of the manufacturing method, and a system comprising an integrated circuit (404) obtained by means of the manufacturing method.
Abstract:
Generating test signals for a device under test (DUT) involves generating a master reference signal, using a vernier technique to generate test pattern signals based on the master reference signal, generating a test clock signal that is phase-matched with and frequency similar to the test pattern signals by providing the master reference signal as input to a phase-locked loop (PLL) and controlling one or more programmable dividers in the PLL to adjust the test clock signal to be a multiple or sub-multiple of a frequency of the test pattern signals, applying the test clock signal to the clock input pin of the DUT, and applying the test pattern signals to data pins of the DUT. When the frequency of the test pattern signals is changed, the test clock signal frequency may be adjusted to calibrate to the changed frequency of the test pattern signals by re-programming the programmable dividers.
Abstract:
A system for preventing bus contention in a multifunction integrated circuit during testing. The system is implemented in an integrated circuit adapted to accept a series of test inputs operable for testing the functionality of the integrated circuit. The integrated circuit includes at least one bus for communicatively coupling the multiple functional blocks. At least a first functional block and a second functional block included in the integrated circuit, the first functional block and the second functional block both coupled to the bus and coupled to accept the test inputs. Abus arbiter is also included in the integrated circuit for granting ownership of the bus. The bus arbiter is operable to disable at least one output of the second functional block if a corresponding output of the first functional block is activated by using a bus grant signal generated for the first functional block. This guarantees that the test inputs can propagate through the first functional block and the second functional block without causing contention for the bus between the first functional block and the second functional block. Alternatively, a centralized test device controller is used to disable the output of the second functional block, as opposed to using the grant signals of the bus arbiter. This allows the incorporation of the implementing logic without altering the logic of the bus arbiter.
Abstract:
A system for preventing bus contention in a multifunction integrated circuit under testing. The system is implemented in an integrated circuit (100) adapted to accept a series of test inputs operable for testing the functionality of the integrated circuit. The integrated circuit includes at least one bus (110) for communicatively coupling the multiple functional blocks (101-104). At least a first functional block and a second functional block are included in the integrated circuit, the first functional block and the second functional block both being coupled to the bus and coupled to accept the test inputs. An output enable controller is also included in the integrated circuit. The output enable controller is coupled to the second functional block and is operable to disable at least one output of the second functional block if a corresponding output of the first functional block is activated. This guarantees that the test inputs can propagate through the first functional block and the second functional block without causing contention for the bus (110) between the first functional block and the second functional block.
Abstract:
According to the invention, one or more external test connection contact points (pads; pins; balls), (2, 3) are provided in an integrated circuit component (chip) (1), through which signals (4, 5, 6) that are to be measured or analyzed are selectively fed, e.g. by means of a multiplex circuit (7, 8), and wherein the signals may be connected by means of routes located internally in the component from switch points that are not directly accessible, e.g. points inside the chip (15 to 20) or covered contact points. The device according to the invention is particularly useful for highly integrated semiconductor chips.
Abstract:
A method and an apparatus for probing signals from an integrated circuit through the back side of an integrated circuit die (401). A passive diffusion (405) is disposed in a semiconductor substrate of a flip-chip mounted integrated circuit die. The passive diffusion is coupled to a signal line (409) through a contact (407). The signal line carries the integrated circuit signal of interest. In an embodiment, the disclosed passive diffusion is oversized to reduce attenuation of signal acquired from the passive diffusion. In addition, the disclosed passive diffusion is laterally spaced from nearby diffusions in the semiconductor substrate of the integrated circuit to enable exposure of the passive diffusion with a reduced risk of damaging nearby structures in the integrated circuit die, such as for example other diffusions, during the exposing process. Moreover, the disclosed passive diffusion is laterally spaced from nearby diffusions to reduce crosstalk interference from the nearby diffusions.