Abstract:
A method is provided for forming a monolithic three-dimensional memory array. The method includes forming a first vertically-oriented polysilicon pillar above a substrate, the first vertically-oriented polysilicon pillar surrounded by a dielectric material, removing the first vertically-oriented polysilicon pillar to form a first void in the dielectric material, and filling the first void with a conductive material to form a first via.
Abstract:
A vertical, columnar resistor in a semiconductor device is provided, along with techniques for fabricating such a resistor. The resistor may be provided in a peripheral area of a 3D memory device which has a two-tier or other multi-tier stack of memory cells. The structure and fabrication of the resistor can be integrated with the structure and fabrication of the stack of memory cells. The resistor may comprise doped polysilicon. In an example implementation, a polysilicon pillar extends a height of a first tier of the stack and a metal pillar above the polysilicon pillar extends a height of a second tier of the stack.
Abstract:
Transistor (100) à enrichissement comportant au moins : -une hétérojonction formée par au moins une première couche (104) comportant du GaNet au moins une deuxième couche (106) comportant de l'AlGaN; -une grille (116) comportant du diamant dopé p et telle qu'une première partie (115) de la deuxième couche de l'hétérojonction délimitant un canal du transistor soit disposée entre la grille et la première couche de l'hétérojonction; et dans lequel la première partie de la deuxième couche de l'hétérojonction comporte une épaisseur comprise entre environ 5 nm et 12 nm et un taux d'aluminium compris entre environ 15% et 20%.
Abstract:
A method including providing a patterned feature extending from a substrate plane of a substrate, the patterned feature including a semiconductor portion and a coating in an unhardened state extending along a top region and along sidewall regions of the semiconductor portion; implanting first ions into the coating, the first ions having a first trajectory along perpendicular to the substrate plane, wherein the first ions form an etch-hardened portion comprising a hardened state disposed along the top region; directing a reactive etch using second ions at the coating, the second ions having a second trajectory forming a non-zero angle with respect to the perpendicular, wherein the reactive etch removes the etch-hardened portion at a first etch rate, wherein the first etch rate is less than a second etch rate when the second ions are directed in the reactive etch to the top portion in the unhardened state.
Abstract:
Various methods and devices that involve body contacted transistors are disclosed. An exemplary method comprises forming a gate on a planar surface of a semiconductor wafer. The gate covers a channel of a first conductivity type that is opposite to a second conductivity type. The method also comprises implanting a body dose of dopants on a source side of the gate using the gate to mask the body dose of dopants. The body dose of dopants spreads underneath the channel to form a deep well. The body dose of dopants has the first conductivity type. The method also comprises implanting, subsequent to implanting the body dose of dopants, a source dose of dopants on the source side of the gate to form a source. The method also comprises forming a source contact that is in contact with the deep well at the planar surface of the semiconductor wafer.
Abstract:
A multilayer composite structure and a method of preparing a multilayer composite structure are provided. The multilayer composite structure comprises a semiconductor handle substrate having a minimum bulk region resistivity of at least about 500 ohm-cm; a silicon dioxide layer on the surface of the semiconductor handle substrate; a carbon-doped amorphous silicon layer in contact with the silicon dioxide layer; a dielectric layer in contact with the carbon-doped amorphous silicon layer; and a semiconductor device layer in contact with the dielectric layer.
Abstract:
An integrated circuit device includes a substrate. The integrated circuit device also includes a first conductive stack including a back-end-of-line (BEOL) conductive layer at a first elevation with reference to the substrate. The integrated circuit device also includes a second conductive stack including the BEOL conductive layer at a second elevation with reference to the substrate. The second elevation differs from the first elevation.
Abstract:
A method for performing a spacer etch process is described. The method includes conformally applying a spacer material over a gate structure on a substrate, and performing a spacer etch process sequence to partially remove the spacer material from a capping region of the gate structure and a substrate region on the substrate adjacent a base of the gate structure, while retaining a spacer sidewall positioned along a sidewall of the gate structure. The spacer etch process sequence may include oxidizing an exposed surface of the spacer material to form a spacer oxidation layer, performing a first etching process to anisotropically remove the spacer oxidation layer from the spacer material at the substrate region on the substrate and the spacer material at the capping region of the gate structure, and performing a second etching process to selectively remove the spacer material from the substrate region on the substrate and the capping region of the gate structure to leave behind the spacer sidewall on the sidewall of the gate structure.
Abstract:
Structure à capacité de type Métal-Isolant-Métal (1) comprenant un substrat (2), une première couche isolante (14) électriquement disposée sur le substrat (2), une électrode inférieure (6) disposée sur la première couche isolante (14), une couche de métal structurée (12) comprenant une pluralité de pores disposée sur l'électrode inférieure (6), une capacité (4) MIM comprenant une première couche conductrice (18) disposée sur la couche de métal structurée (12) en contact avec l'électrode inférieure (6) et à l'intérieur des pores, une couche diélectrique (20) recouvrant la première couche conductrice (18), une seconde couche conductrice (24) recouvrant la couche diélectrique (20) en contact avec une électrode supérieure (8) disposée sur la capacité (4) MIM, une seconde couche isolante (16) électriquement disposée sur l'électrode supérieure (8).