摘要:
Ferroelectric capacitors used in ferroelectric random access memories (F-RAM) and methods for fabricating the same to reduce sidewall leakage are described. In one embodiment, the method includes depositing over a surface of a substrate, a ferro stack including a bottom electrode layer electrically coupled to a bottom electrode contact extending through the substrate, a top electrode layer and ferroelectric layer there between. A hard-mask is formed over the ferro stack, and a top electrode formed by etching through the top electrode layer and at least partially through the ferroelectric layer. A non-conductive barrier is formed on sidewalls formed by etching through the top electrode layer and at least partially through the ferroelectric layer, and then a bottom electrode is formed by etching the bottom electrode layer so that conductive residues generated by the etching are electrically isolated from the top electrode by the nonconductive barrier.
摘要:
A circuit having an autonomous ferroelectric memory latch (AML) is disclosed. An AML characterized by an AML input, an AML output, a first AML power contact, a second AML power contact and an AML state, and a first switch in series with one of the AML input or the AML output. The switch is positioned to prevent the state of the AML from changing when power is provided between the first and second AML power contacts, In one aspect of the invention, the circuit could include a second switch in series with the other of the AML input or the AML output and a latch in series with the AML input or the AML output. The latch is positioned such that a direct path back does not exist between the AML output and the AML input.
摘要:
A method of encapsulating a ferroelectric capacitor or ferroelectric memory cell includes forming encapsulation materials adjacent to a ferroelectric capacitor, forming a ferroelectric oxide (FEO) layer over the encapsulated ferroelectric capacitor, and forming an FEO encapsulation layer over the ferroelectric oxide to provide additional protection from hydrogen induced degradation.
摘要翻译:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),其中0.9
摘要:
A method of manufacturing a patterned ferroelectric polymer memory medium is disclosed, which includes forming an electrode on a substrate; forming a ferroelectric polymer thin film on the electrode; and patterning and orienting the polymer thin film into a plurality of nanostructures by embossing techniques. Also disclosed are two methods which include forming nanofeatures in an interlayer dielectric (ILD) layer deposited on a substrate; forming a ferroelectric polymer thin film on the ILD layer inthe nanofeatures; and patterning and orienting the polymer thin film into a plurality of nanostructures by pressing. The patterning process followed by an annealing process promotes specific crystal orientation, which significantly reduces the operation voltage, and increases the signal-to-noise ratio. The invention also covers devices made of a ferroelectric polymer layer oriented by such an embossing method and the use of such devices at a coercive field of 10MV/m or less.
摘要:
본 발명은 전자 및 전기 재료의 구성물로서 사용되는 강유전 물질과 이를 이용한 강유전체층의 형성방법에 관한 것이다. 본 발명에 있어서는 강유전 물질에 금속물질을 혼합하여 강유전 물질을 형성하게 된다. 이러한 강유전 물질은 기존의 강유전 물질에 비해 잔류분극값이 매우 크거나 또는 다소 낮은 값을 갖게 된다. 기존의 강유전 물질에 비해 잔류 분극값이 큰 강유전 물질은 반도체 메모리의 캐패시터의 유전물질로서 사용하기에 적합하고, 잔류분극값이 다소 낮은 강유전 물질의 경우에는 강유전체 트랜지스터의 게이트 재질로서 사용하기에 적합하다.
摘要:
본 발명은 전자 및 전기 재료의 구성물로서 사용되는 강유전 물질과 이를 이용한 강유전체층의 형성방법에 관한 것이다. 본 발명에 있어서는 기존의 강유전 물질에 금속물질로서 Fe을 혼합하여 신규한 강유전 물질을 형성하게 된다. 본 발명에 따른 강유전 물질은 기존의 강유전 물질에 비해 잔류분극값이 매우 큰 값을 갖게 된다. 따라서, 본 발명에 따른 강유전 물질은 반도체 메모리나 압전소자 등의 재질로서 훌륭하게 채용하여 사용할 수 있게 된다.
摘要:
One aspect of the invention provides a method of manufacturing a FeRAM semiconductor device (100) having reduce single bit fails. This aspect includes forming an electrical contact within a dielectric layer located over a semiconductor substrate (110) and forming a first barrier layer over the dielectric layer (130) and the electrical contact. The first barrier layer (143) is formed by depositing multiple barrier layers and densifying each of the barrier layers after its deposition. This forms a stack of multiple barrier layers of a same elemental composition. The method further includes forming a second barrier layer over the first barrier layer and forming a lower capacitor electrode, a ferroelectric dielectric layer over the lower capacitor, and forming an upper capacitor electrode over the ferroelectric dielectric layer. A device made by this method is also provided herein.