Abstract:
The basic structure and functionality of a probe as disclosed herein allows for flexibly incorporating into the probe, various sensing elements for various sensing applications. Two example applications among these various sensing applications include bio-sensing and chemical-sensing applications. For bio-sensing applications the probe, which is fabricated upon a silicon substrate, includes a bio-sensing element such as a nano-pillar transistor, and for chemical-sensing applications the probe includes a sensing element that has a functionalized contact area whereby the sensing element generates a voltage when exposed to one or more chemicals of interest.
Abstract:
Semiconductor devices having three-dimensional bodies with modulated heights and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a first semiconductor body disposed above a substrate. The first semiconductor body has a first height and an uppermost surface with a first horizontal plane. The semiconductor structure also includes a second semiconductor device having a second semiconductor body disposed above the substrate. The second semiconductor body has a second height and an uppermost surface with a second horizontal plane. The first and second horizontal planes are co-planar and the first and second heights are different.
Abstract:
본 발명은 멀티 게이트 트랜지스터에 관한 것으로, 본 발명의 일 실시예에 따른 멀티 게이트 트랜지스터는 하나의 포트로부터 분기되어 서로 대향하여 교대로 형성되되, 서로 인접하는 게이트 간에는 반대 방향의 전류가 흐르는 복수의 게이트와, 상기 복수의 게이트의 일 측 또는 타 측에 형성되는 소스와, 상기 복수의 게이트의 타 측 또는 일 측에 형성되는 드레인을 포함함으로써, 서로 인접한 게이트 간에 흐르는 전류의 방향이 서로 반대 방향이 되어 상호 인덕턴스를 유도함으로써 기생 인덕턴스 성분을 최소화할 수 있다.
Abstract:
A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
Abstract:
Described are a method for adjusting the operating temperature of MOS power components consisting of a plurality of identical individual cells as well as a component for carrying out said method. As a characteristic feature, the gate electrode network (4) of the active chip region is subdivided into several gate electrode network sectors (B1, B2, B3) which are electrically isolated from one another by means of isolating points and to each of which a different gate voltage is fed via corresponding contacts.
Abstract:
ABSTRACT A disclosed semiconductor device includes a MOS transistor that causes no problems concerning the formation of a thick gate insulating film and that is applicable to high withstand voltage devices. A drain region has a double diffusion structure including an N-drain region 3d and an N+ drain region 11d. A gate electrode includes a first gate electrode 9 formed on an insulating film 7 and a second gate electrode 13 formed on the first gate electrode 9 via a gate electrode insulating film 11. Between the gate insulating film 7 and the N+ source region 11s, a field insulating film 15 is disposed, over which an edge of the first gate electrode 9 is disposed. A gate voltage applied to the second gate electrode 13 via a gate wiring 13g is divided between the gate insulating film 7 and the gate electrode insulating film 11.
Abstract:
A semiconductor device (10), comprising a first semiconductor portion (32) having a first end (34), a second end (36), and a slit portion (30), wherein the width of the slit portion (30) is less than the width of at least one of the first end (34) and the second end (36); a second portion (38) that is a different material than the first semiconductor portion (32), a third portion (40) that is a different material than the first semiconductor portion (32), wherein the second (38) and third (40) portions are on opposite sides of the slit portion (30), and at least three terminals selected from a group consisting of a first terminal (12) connected to the first end (34), a second terminal (14) connected to the second end (36), a third terminal (16) connected to the second portion (38), and a fourth terminal (17) connected to the third portion (40).
Abstract:
A system is provided for producing a triple-gate transistor segment (300), utilizing a standard semiconductor substrate (302). The substrate has a plurality of isolation regions (304) separated by a channel region (306). A removable form structure (308) is formed atop the isolation regions to define an area over the channel region within which a channel body structure (316) is formed. The form structure (308) is then removed. Channel body structure (316) has blunted corners or edges (3,18).