US10299418B2

A component mounting system that efficiently determines a component as a bulk component to be mounted on a bulk feeder through a simulation, and a bulk component determining method. The component mounting system includes a printed-circuit-board conveyance section that includes conveyance lanes and which convey a plurality of different types of printed circuit boards, a component supply section, a mounting head, a bulk feeder, and a bulk component determining section that performs a simulation in which operation times when the components supplied from the component supply section are moved on the printed circuit boards on the conveyance lanes are calculated for all the components and determines the bulk component to be mounted on the bulk feeder based on the calculated operation times.
US10299413B2

An electronic rack includes a back panel, a number of server slots, and a number of server blades inserted therein. The back panel includes a heat removal liquid manifold to provide heat removal liquid from an external heat removal system to remove heat from the server blades. Each server blade includes a server tray to contain an information technology (IT) component and a self-fitting coupling assembly having a first liquid intake connector and a first liquid outlet connector to self-align with a second liquid intake connector and a second liquid outlet connector mounted on the liquid manifold mounted on the back panel. The first liquid intake connector and the first liquid outlet connector are capable of moving around within a predetermined tolerance space with respect to the server tray.
US10299410B1

A modular cooling apparatus for cooling one or more rack-mounted electronic component enclosures in a datacenter includes a base duct section and a duct assembly. The base duct section includes an inlet to receive a cooling airflow and an outlet to transfer to the cooling airflow to the duct assembly. The duct assembly is connected to the base duct section. The duct assembly includes one or more modular duct sections. Each of the one or more modular duct sections has a vent and is configured such that the vent aligns with an exterior opening in the respective one of the one or more electronic component enclosures.
US10299396B2

Methods and apparatus provide for an improved visual and optionally tactile features on a visible element of an article, such as a consumer electronic device (e.g., a mobile electronic device, a mobile phone, a smartphone, a tablet, a phablet, a notebook computer, a laptop, etc.).
US10299390B2

There is provided a cover window including a first region; and second regions at both sides of the first region, wherein the first region has a stiffness being different from the second regions, and the stiffness of an interface region between the first region and the second region is gradually changed.
US10299383B2

A composite electronic component includes an electronic element and a resistance element in a height direction. The electronic element includes an electronic element body, and a first and second external electrodes separated from each other in a length direction. The resistance element includes a base portion, a resistor disposed on the upper surface of the base portion, a protective film, and first to third upper surface conductors. The first and second upper surface conductors are separated from each other in the length direction, and the resistor and the third upper surface conductor connected thereto are located between the first and the second upper surface conductors. Dimensions in the height direction from the upper surface of the base portion to the surfaces of the first and second upper surface conductors are larger than dimension in the height direction from the upper surface of the base portion to the surface of the portion overlapped with the protective film in the height direction of the third upper surface conductor.
US10299377B2

A conductive component includes a first electrode pattern made of metal thin wires, and includes a plurality of first conductive patterns that extend in a first direction alternating with first non-conductive patterns. Each first conductive pattern includes break parts in portions other than intersection parts of the thin metal wires. The conductive component further includes a second electrode pattern made of thin metal wires, and includes a plurality of second conductive patterns that extend in a second direction orthogonal to the first direction and alternating with second non-conductive patterns. Each second conductive pattern includes break parts in portions other than intersection parts of thin metal wires.
US10299376B2

A method for producing an electrical wiring member includes press-molding a composition containing a resin material and metal particles with an insulating layer, each of which is constituted by a metal particle and a surface insulating layer covering the metal particle and containing a glass material as a main material, thereby obtaining a powder-compacted layer and irradiating the powder-compacted layer with an energy beam, thereby causing the irradiated regions to exhibit electrical conductivity.
US10299373B2

A method of manufacturing a rigid-flexible printed circuit board, which including: providing a first flexible film having a first metal layer on one or both surfaces; forming a circuit pattern by patterning the first metal layer; forming a second flexible film, which has a second metal layer on one surface, on one or both surfaces of the first flexible film; forming a circuit pattern by patterning the second metal layer in a rigid domain R; providing an anti-oxidation protective layer on the second metal layer in a flexible domain F; laminating at least one circuit layer on the second flexible film; and removing the circuit layer in the flexible domain F.
US10299366B2

In an example, a polymeric material is disclosed. The polymeric material includes a polymer substrate and a plurality of graphene traces arranged to form a tamper detection circuit on the polymer substrate.
US10299365B1

The disclosed heatsink apparatus may include (i) a base that facilitates thermal transfer between a computing component and cooling airflow, (ii) a plurality of fins, extending from the base, that provide additional surface area to facilitate the thermal transfer between the computing component and the cooling airflow, (iii) at least one channel, defined within the plurality of fins, that facilitates a faster passage of a portion of the cooling airflow across the heatsink apparatus and (iv) at least one air dam that prevents the cooling airflow from escaping a designated path on a printed circuit board. Various other apparatuses, systems, and methods are also disclosed.
US10299361B2

An optical pulse for an extreme ultraviolet (EUV) light source may be formed by illuminating a semiconductor material of a modulation system with a first light beam having a first wavelength; applying a voltage to the semiconductor material for a time duration, the applied voltage being sufficient to modify an index of refraction of the semiconductor material such that a polarization state of a light beam having a second wavelength passing through the semiconductor material is modified to pass through at least one polarization-based optical element of the modulation system; and forming an optical pulse by passing a second light beam having the second wavelength through the semiconductor material during the time duration.
US10299359B2

The lighting control console and a control method using the lighting control console are disclosed. The lighting control console includes an operation device, a control device that controls a lighting fixture, and a storage that stores position information of a plurality of points. The storage stores a plurality of paths connecting two points. The operation device accepts first and second operation inputs. The control device controls the lighting fixture so as to move a lighting position along a first path determined out of the plurality of paths in accordance with the first operation input at a speed in accordance with an input amount of the first operation input. The control device controls the lighting fixture so as to change the lighting position onto a second path adjacent to the first path upon the second operation input exceeding a predetermined threshold while the lighting position is moving along the first path.
US10299354B2

A wireless operated LED lighting controller has both analog and phase control outputs which operate a dimming luminaire, and sensors for lighting and motion which operate autonomously as needed. In addition it is locally operated by a handheld infra-red controller. At least one sensor can be chosen from the group of: a light detector, a motion detector, an acoustic detector, a temperature sensor, and a microwave detector. The sensor is electrically connected to the phase control output. A light output of the controller is affected by signals detected by the at least one sensor. The lighting controller has the phase control output enabled for either a leading edge dimming or a trailing edge dimming, and has a mode for completely turning off the dimming luminaire.
US10299350B2

Systems and methods for controlling electrical loads in one or more areas. The system includes a room controller having a microprocessor for accessing data and providing commands, memory for storing information operably connected to the microprocessor, a relay for powering a load based on commands from the microprocessor, and a port for connecting a peripheral device. The system also includes a peripheral device connected to the port and configured to send data including a device type and a device instance byte to the controller indicating the type of peripheral device. The device instance byte includes a port number identifying the port and a slot number identifying a time slot within a time domain multiplexing cycle. The system also includes a load connected to the relay.
US10299340B2

A light-bar structure includes a first substrate, a second substrate, and an insulation layer. The first substrate includes a first anode region and a plurality of element regions. Each of the element regions is configured to allow a light-emitting element to be disposed on. At least one of the element regions includes an anode portion and a node portion. The anode portion is connected to the first anode region. The second substrate includes a grounding region and a second anode region. The anode portion is disposed correspondingly to the grounding region. The node portion is disposed correspondingly to the second anode region. The insulation layer is disposed between the first substrate and the second substrate.
US10299324B2

Provided is a lighting apparatus. The lighting apparatus may include two or more lighting units each including a plurality of LED groups which sequentially emit light in response to changes of a rectified voltage. The two or more lighting units may include one or more LED groups having the same light emitting sequence but having different light emitting points of time. Thus, current harmonic can be reduced, and power efficiency can be improved.
US10299322B2

System and method for regulating one or more currents. The system includes a system controller, an inductor, a first resistor, a switch and a first diode. The system controller includes a first controller terminal and a ground terminal, the system controller being configured to output a drive signal at the first controller terminal. The inductor includes a first inductor terminal and a second inductor terminal, the first inductor terminal being coupled to the ground terminal, the second inductor terminal being coupled to one or more light emitting diodes. The first resistor includes a first resistor terminal and a second resistor terminal, the first resistor terminal being coupled to the ground terminal. The switch is configured to receive the drive signal and coupled to the second resistor terminal. The first diode includes a first diode terminal and a second diode terminal and coupled to the first resistor.
US10299312B2

A method performed by a UE of a telecommunications system includes obtaining a first UE activity configuration and obtaining a second UE activity configuration. An activity and/or inactivity duration defined by the first UE activity configuration is different than an activity and/or inactivity duration defined by the second activity configuration. A transition is performed between the UE using the first UE activity configuration and the UE using the second UE activity configuration. The method further includes adapting one or more operations started or being performed under the first UE activity configuration being used just before the transition. The adapting is based on at least one of: the type of operation, activity and/or inactivity level of the first UE activity configuration and/or of the second UE activity configuration, and a relation between the first UE activity configuration and the second UE activity configuration.
US10299311B2

A system and method for ensuring continuous communication between a user device and an emergency dispatcher unit. The method includes establishing a first communication link between a user device and an emergency dispatcher unit via a first application installed on the user device; receiving reconnection information based on the first communication link; monitoring the first communication link for detection of an imminent crash of the first application based on analysis of connection parameters; and establishing, using the reconnection information, a second communication link between the user device and the emergency dispatcher through a second application when an imminent crash is detected, where the second communication link is established before the first application has crashed, such that there is continuous transmission of communication between the user device and the emergency dispatcher unit.
US10299310B2

A method for a wireless device including a first module for a local area and a second module for the first module and a remote area according to an exemplary embodiment of this specification may include the steps of transmitting, by a seeker STA having the first module interconnected with the second module, a first version message including first unique information of the seeker STA to an advertiser STA, and receiving a second version message including second unique information from the advertiser STA, storing the first and second unique information as first and second content information, and configuring a service session with the advertiser STA, transmitting the first content information to a wideband server that is associated with the second module, and transmitting a retrieve request message including the second content information for retrieving a remote service for the remote area to the wideband server.
US10299309B2

Embodiments of the present disclosure provide a method for accessing a local network, and a related device, so that a user equipment can simultaneously access an operator network and a local network. The method includes: receiving, by a mobility management entity (MME), an access request of a user equipment (UE) that is sent by a base station, where the access request carries access information of the UE; determining, according to the access information of the UE, a first local gateway corresponding to the UE; and establishing, for the UE, a user plane bearer that is from the base station to a gateway of a core network and that includes the first local gateway used as an intermediate node.
US10299306B2

A communication control method, radio terminal and processor thereof include transmitting, by a base station, information on a priority to be used to establish a bearer for direct communication between terminals, receiving, by the radio terminal, the information on the priority from the base station, and establishing, by the radio terminal, a plurality of bearers in accordance with a priority of each of a plurality of pieces of data to be transmitted by the direct communication, on a basis of the information on the priority.
US10299305B2

Extending cellular telecommunication service from a first UE to another device. The first UE may register for cellular telecommunication service with a cellular network using a first cellular service account, using a cellular communication link via a cellular radio. A second device may be discovered and a communication link may be established between the first UE and the second device. The second device may be registered to use cellular telecommunication capability provided by the first UE. Communications between the second device and the cellular network may be conveyed via the communication link between the first UE and the second device and the cellular communication link. Conveying communications between the second device and the cellular network may provide use of the first cellular service account for cellular telecommunication service to the second device.
US10299301B2

A first node in a connection network and a method for providing said first node with information related to a geographical position of a user terminal, which connection network comprises said first node, a second node and an access network, wherein: the first node has access to at least one user terminal via a wireless interface provided by the access network; and the second node is connected to the first node and has access to at least one external network, which method is characterized by the steps of: sending a session request from the second node to the first node; and sending a session response from the first node to the second node after receiving said session request, which session response comprises information related to a geographical position of the terminal associated with the session in question.
US10299286B2

A method (100, 200), performed in a network node, for managing uplink traffic from a client device in a communication network is disclosed. The method comprises instructing the client device to cease sending uplink traffic on existing sessions between the client device and the network node (110), checking for expiry of a time period (130), and on expiry of the time period (140), and instructing the client device to resume sending uplink traffic on existing sessions between the client device and the network node (150).Also disclosed are a network node (300, 400, 500) and a computer program product configured, when run on a computer, to carry out a method for managing uplink traffic from a client device in a communication network.
US10299276B2

Example implementations relate to network deployment of devices. For example, a non-transitory computer readable medium storing instructions executable by a processing resource can determine a plurality of deployment thresholds of a plurality of devices, wherein the plurality of deployment thresholds are associated with a type of the plurality of devices. The instructions can cause the processing resource to monitor deployment data associated with the plurality of devices to identify a device with a deployment outlier. The device with the deployment outlier is a device with deployment data that is outside a deployment threshold of the device. The instructions can cause the processing resource to adjust the deployment threshold of the device based on the monitoring.
US10299275B2

A method for improved random access procedures by a UE is provided. The method comprises: measuring a common CSI-RS; selecting a best horizontal/vertical beam from a set of fixed beams; determining a preamble mapped to the selected horizontal/vertical beam; transmitting the preamble; and receiving a random access response.
US10299263B2

Methods, a wireless device (110) and a radio network node (120) for managing a control block are disclosed. An extended Temporary Flow Identifier, eTFI, is assigned to the wireless device (110) by the radio network node (120). The radio network node (120) constructs the control information. The radio network node (120) performs a bit-wise modulo two addition with a control block and a combination of the eTFI and a pre-determined bit pattern to obtain a modified control block. The radio network node (120) adds channel coding redundancy. The radio network node (120) maps the modified control block onto physical resources. The radio network node (120) sends the modified control block to the wireless device (110). The wireless device (110) decodes the received modified control block removing the channel coding redundancy, performs a bit-wise modulo two addition between the modified control block and a combination of the eTFI and a pre-determined bit pattern to obtain a control block. The wireless device (110) decodes the control block using FIRE-decoding to obtain the control information. The wireless device (110) determines it is the intended recipient of the control information if the TFI information therein matches its assigned TFI. Corresponding computer programs and carriers therefor are also disclosed.
US10299262B2

A method and apparatus schedule user equipment uplink transmissions on an unlicensed carrier. A grant for transmitting physical uplink shared channel on a serving cell operating on an unlicensed carrier can be received in a subframe. A set of subframes can be determined for possible transmission of the physical uplink shared channel. Listen before talk can be performed on the unlicensed carrier to determine an earliest unoccupied subframe in the set of subframes. A physical uplink shared channel can be transmitted in multiple subframes within the set of subframes on the unlicensed carrier, starting with the earliest unoccupied subframe, in response to receiving the grant.
US10299255B2

A method for transmitting an uplink control channel from a UE to an eNB in a wireless communication system is disclosed. The method comprises the steps of classifying each of a plurality of resource blocks allocated to a system bandwidth into a plurality of sub-resource blocks; mapping the uplink control channel into a first sub-resource block of a minimum index and a second sub-resource block of a maximum index in accordance with a transmission diversity scheme; and transmitting the uplink control channel to the eNB.
US10299240B2

The present invention provides a positioning parameter coordination apparatus, system, and method. A single positioning controller (SPC) receives a positioning request message sent by a positioning request device, obtains capability information of a user equipment (UE) according to an identifier of the UE, and determines at least one first access network device to complete positioning configuration. The SPC positions the UE according to a positioning parameter of the UE.
US10299235B2

A method for performing a device-to-device (D2D) communication in a wireless communication system by a terminal, according to an embodiment of the present invention, comprises: a step for detecting a D2D synchronization signal from at least one synchronization source; a step of measuring a D2D reference signal received through the same subframe as that for the detected D2D synchronization signal; and a step of selecting synchronization reference UE from said at least one synchronization source according to whether a prescribed condition is satisfied, wherein said prescribed condition is satisfied if the measured result of the D2D reference signal satisfies a threshold value and an information element of a D2D channel linked with the D2D reference signal satisfying the threshold value is acquired.
US10299228B1

The technology described herein enhances the operation of a wireless Radio Frequency (RF) system to dynamically modify Automatic Gain Control (AGC) based on RF characteristics of a received data signal. In one implementation, a method of operating a wireless RF system includes receiving a data signal and applying AGC based on AGC thresholds. The method further includes determining an RF characteristic of the data signal, determining signal inflections and signal magnitudes of the RF characteristic during a time window, and comparing the signal inflections and signal magnitudes to an AGC signal inflection threshold and AGC signal magnitude threshold, respectively. The method further provides widening the AGC thresholds if the signal inflections and signal magnitudes exceed the AGC inflection and magnitude thresholds, respectively.
US10299226B2

Adjustment of a transmit power parameter, such as a ceiling level, is disclosed. Signal-to-noise type information and committed power information can be employed to determine the ceiling level adjustment. A ceiling level can be a predetermined cap on transmission power for downlink or uplink channels between a user equipment and a base station. Where there is sufficient headroom in total transmission power and a power level greater than the predetermined ceiling can be effective, the ceiling can be adjusted to greater values than the predetermined value. Where total transmission power is more committed, ceiling adjustment can be prevented. Further, where there is no adequate benefit from increasing the ceiling, the adjustment of the ceiling can be prevented. While some instances can result in optimized transmission levels below the ceiling, instances can also be accommodated where the ceiling is to be increased.
US10299225B2

A method, computer-readable medium, and apparatus operate to reduce or eliminate interference with one or more other communication systems having specific transmission requirements within a specific geographic area. For example, aspects operate by determining that a user equipment (UE) is in a protection zone where additional transmission requirements apply. The additional transmission requirements enable coexistence with one or more other communication systems in the protection zone. The UE may identify, based on being in the protection zone and a coexistence mode, one or more transmit emission limit requirements to be met. The UE may identify, based on being in the protection zone and the coexistence mode, one or more maximum transmit power requirements to be met. The UE may configure a transmit output power, at which the UE can meet the one or more transmit emission limit requirements and the one or more maximum transmit power requirements.
US10299223B2

A method is provided in one example embodiment and may include negotiating power domain interference coordination (PDIC) parameters between a macro cell radio and at least one small cell radio; determining successive interference cancellation (SIC) parameters for each of one or more user equipment (UE) that are to perform SIC for one or more transmissions; and sending the SIC parameters to each of the one or more user equipment. Negotiating PDIC parameters can include determining, by the macro cell radio and at least one small cell radio, one or more physical resource blocks (PRBs) for which transmission power levels can be coordinated for a plurality of frequencies in a frequency domain and a plurality of subframes in a time domain and exchanging PDIC parameters between the cell radios in order to perform PDIC transmissions for UE served by the cell radios.
US10299220B2

A method and apparatus for transmitting data are provided. The method includes: when detecting that there is a wireless frame currently being transmitted on a working channel, the first sender estimates a signal attenuation between the first sender and a first receiver for the wireless frame currently being transmitted to obtain an estimation result, and determines a transmitting power of the first sender according to the estimation result; and the first sender sends a wireless frame to a second receiver with the determined transmitting power.
US10299218B2

In a wireless communication system, there are several wireless channels used for communication between users and a base station. Channel characteristics may be defined by whether a channel is carrying traffic data and the timing of the channel transmissions with respect to channels not carrying traffic data. Different power levels between channels carrying traffic data or not may be defined and individual power levels of each channel may be amended based on individual power level command responses.
US10299204B2

According to certain embodiments, a method for activating and deactivating multiple secondary cells (150A-B) includes receiving a first message requesting activation or deactivation of a first secondary cell (first SCell) (150A) for a first carrier. In response to the first message, a first procedure is initiated to activate or deactivate the first SCell (150A). The wireless device (110A) may have a first delay period (Tactivate_basic) within which to complete the first procedure. While performing the first procedure to activate or deactivate the first SCell (150A), a second message to activate, deactivate, configure or deconfigure a second SCell (150B) for a second carrier is received. In response to receiving the second message to activate, deactivate, configure, or deconfigure the second SCell (150B), the first procedure may be modified by replacing the first delay period with a second delay period (Tactivate_total) within which to complete the first procedure to activate or deactivate the first SCell (150A). The second delay period (Tactivate_total) may be greater than the first delay period (Tactivate_basic).
US10299198B2

In one embodiment, a method for Basic Service Set (BSS) association, comprises receiving, by a station (STA) from an access point (AP), a frame comprising a traffic type indicator, wherein the traffic type indicator indicates a type of STA that is allowed to associate with the AP and the frame is a beacon frame or a probe response frame; and associating the STA with the AP upon determining that a device type of the STA is indicated by the traffic type indicator.
US10299194B2

A method (200) for facilitating network identification is provided. The method comprises, at an access node of a first network: detecting (S210) a physical-layer-related identity of each of one or more neighboring access nodes; decoding (S220), for each of the one or more neighboring access nodes, a network identity of the neighboring access node; for each of the one or more neighboring access nodes: determining (S230) whether the neighboring access node belongs to the first network or a different network; and determining (S230) an identity group in which the detected physical-layer-related identity of the neighboring access node is included; and selecting (S240), as a physical-layer-related identity of the access node, a physical-layer-related identity from an identity group other than any identity group in which a physical-layer-related identity of a neighboring access node belonging to a different network is included.
US10299187B2

The present invention relates to a method for transmitting system information from a base station to a user equipment, the user equipment being a limited-bandwidth device, camping on the base station, wherein the system information is divided in a plurality of system information blocks, and the system information further has associated a validity period, the validity period indicating how long the transmitted system information stays valid, while no change of system information occurs, wherein the validity period for system information relating to limited-bandwidth devices is longer than for system information relating to non-limited-bandwidth devices.
US10299183B2

A new traffic offloading technique in a communication system is provided. A communication apparatus according to the present invention includes: a first means for selecting, from among a plurality of network nodes including a first network node and a second network node, the second network node for a terminal capable of autonomous communication with a communication-counterpart equipment, wherein the first network node performs predetermined signal processing in a first network and the second network node operates a function of the first network node through a virtual machine in a second network; and a second means for sending communication data related to the terminal to the second network node selected.
US10299182B2

A communication control method for performing an offload from a cellular RAN to a wireless LAN, includes a step of performing, by a user terminal, a network selection operation to select an appropriate access network with which a traffic of the user terminal is exchanged, from the cellular RAN and the wireless LAN on the basis of determination parameters. The determination parameters comprises at least one of: a cellular network status that is a network status concerning the cellular RAN; a wireless LAN network status that is a network status concerning the wireless LAN; a cellular radio link status that is a radio link status between the cellular RAN and the user terminal; and a wireless LAN radio link status that is a radio link status between the wireless LAN and the user terminal.
US10299177B2

The present invention relates to a donor radio access node (DeNB1) configured to wirelessly connect to, and to proxy operation of a source relay node (RN1), and further configured to forward upstream user traffic towards a serving gateway (S-GW1) during a handover of a particular mobile device (UE1) from a source cell (A) operated by the source relay node to a target cell (C) operated by a target radio access node (eNB2). In accordance with an embodiment of the invention, the donor radio access node comprises: —first forwarding means (FW1) for forwarding a sequence of upstream data packets (P1, P2, P3) from the source relay node to the serving gateway, which sequence of upstream data packets comprising upstream data packets up to a particular packet sequence number (Y−1), —second forwarding means (FW2) for forwarding a data transfer status message (SN STATUS TRANSFER) for the particular mobile device from the source relay node to the target radio access node, which data transfer status message comprising an information element (Y) indicative of the particular packet sequence number, wherein the donor radio access node comprises a forwarding controller (CTRL) coupled to the first and second forwarding means, and configured to interdependently control forwarding of the data transfer status message and of any pending upstream data packet (P2, P3) out of the sequence of upstream data packets that has not been yet validly forwarded to the serving gateway. The present invention also relates to a method for forwarding upstream user traffic towards a serving gateway during a handover.
US10299174B2

A method and apparatus can be configured to attach to a first network. The first network may use a first radio-access technology. The method may also comprise connecting to a second network. The second network may use a second radio-access technology. The method may also comprise transmitting an identifier to the second network. The identifier may relate to a first network node of the first network to which the apparatus may be attached.
US10299165B2

A method and apparatus are disclosed herein for user/base station signaling and load balancing across a wireless network. In one embodiment, the method comprises broadcasting, by a first base station in the wireless network, information indicative of the load of the first base station; receiving an association request from the user terminal for association with the first base station in response to the user terminal predicting a net throughput from the first base station, based on the information indicative of the load, being greater than net throughput from a second base station to which the user terminal is currently associated; and determining whether to accept the association request while performing an association process for selectively allowing only a fraction of requests from user terminals to associated with the base station.
US10299160B2

Systems described herein use a group packet data network (PDN) to support communications from machine-type communications (MTC) devices on wireless networks. The systems assign a MTC device to a group with a group identifier, the group associating the MTC device, and other MTC devices, with a customer network; receive an attach request from the MTC device; retrieve the group identifier for the MTC device; configure a bearer path between the MTC device and the customer network based on the group identifier, the bearer path including a group PDN that transports data packets from the MTC device, and the other MTC devices, between a serving gateway (SGW) and a PDN gateway (PGW); and send data packets from the MTC device over the group PDN.
US10299159B2

A communication system is disclosed, in which a mobile telephone has a control-plane connection to a first base station and communicates user data using at least one communication bearer provided via a second base station. The base stations are configured to exchange information relating to the data rate required for the mobile telephone via the second base station. The first base station derives, based on the exchanged information, an aggregated maximum bit rate (AMBR) parameter specific to the second base station and provides the derived AMBR parameter to the second base station for use in data rate enforcement for the mobile telephone's communications via the second base station.
US10299157B2

The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for managing congestion in a first node in a wireless communication system is provided. The method includes receiving status information from each of nodes configuring a network with the first node, receiving information about a service requirement criterion from a second node as one of the nodes, acquiring additional path setup information for the second node based on the status information received from each of the nodes and the information about the service requirement criterion received from the second node, and transmitting the acquired additional path setup information to the second node.
US10299151B1

Application modules (AMs) with multi-carrier subscriber identity modules (MSIMs) for diagnostic mode monitoring of signals within wireless distributed communications systems (WDCSs), including but not limited to distributed antenna systems (DASs). Related systems and methods are also disclosed. The MSIMs comprise circuitry configured to implement multiple SIM instances, each SIM instance containing carrier-specific data to enable the AM to register with a carrier to perform diagnostic mode monitoring of signals from the respective carrier. In one embodiment, AMs may be associated with components of a WDCS. By associating the AMs into components of a WDCS, live signals in the WDCS can be monitored and measured for monitoring the performance of components within the WDCS. The AMs may include one or more application level applications configured to receive and monitor signals in the WDCS, and to provide application-level information about such monitored signals to other components or systems, or technicians.
US10299149B2

Systems, methods, and devices enable spectrum management by identifying, classifying, and cataloging signals of interest based on radio frequency measurements. In an embodiment, signals and the parameters of the signals may be identified and indications of available frequencies may be presented to a user. In another embodiment, the protocols of signals may also be identified. In a further embodiment, the modulation of signals, data types carried by the signals, and estimated signal origins may be identified.
US10299146B2

Embodiments of systems and techniques for coverage adjustment in evolved universal terrain radio access networks (E-UTRANs) are described. In some embodiments, a network management (NM) apparatus may receive data representative of first and second radio link failure (RLF) reports including information related to respective disconnections of first and second user equipment (UEs) from an E-UTRAN. The NM apparatus may identify a hole in a coverage area of the E-UTRAN based at least in part on the first and second RLF reports, and may perform an automated coverage and capacity optimization (CCO) action to reconfigure cell resources of the E-UTRAN based on the identified hole. Other embodiments may be described and claimed.
US10299139B1

A non-transitory computer readable storage medium has instructions executed by a processor to access a list of Wi-Fi networks available to a user device. User network activity is classified. It is determined that there is a new Wi-Fi network for the user device to initiate a connection attempt. In the event of an existing licensed spectrum wireless network data connection on the user device, licensed spectrum wireless network data connection analytics are collected and an attempt is made to transition to the new Wi-Fi network to produce either a failed transition to the new Wi-Fi network or a successful transition to the new Wi-Fi network. In the event of an existing Wi-Fi network collection on the user device or a successful transition to the new Wi-Fi network, available Wi-Fi networks are periodically assessed to establish one of a network unavailable state and a network available state.
US10299134B2

In order for making MTC more efficient and/or secure, a base station forming a communication system connects a UE to a core network. A node serves as an entering point to the core network for a service provider, and transmits traffic between the service provider and the UE. The node establishes, as a connection to the base station, a first connection for directly transceiving messages between the node and the base station. Alternatively, the node establishes a second connection for transparently transceiving the messages through a different node that is placed within the core network and has established a different secure connection to the base station.
US10299130B2

Resource sharing method and device are provided. The method includes: sending an access request to a second communication network through a target backhaul link of the second communication network by a resource sharing device when the access request is received from a terminal from a first communication network; sending the access request to the first communication network by the second communication network, for authenticating the terminal; sending QoS level information of the terminal to the second communication network by the first communication network when the terminal is authenticated, and sending access rejected information to the second communication network when the terminal is unauthenticated; providing services for the terminal according to the subscription QoS level information, or rejecting to provide services for the terminal according to the access rejected information. The present disclosure realizes sharing of backhaul resources of different communication networks and ensures the QoS of the resource sharing device.
US10299119B2

The disclosure relates to a security method in a radio access network system. A shared secret key is stored in both a user device and a core network system. A further secret key is received from the core network system, wherein the further secret key has been derived using the shared secret key stored in the core network system. One or more values are provided over the radio interface to the user device to derive the further secret key in the user device from at least the shared secret key stored in the user device and one or more of the one or more values provided over the radio interface. An authentication procedure and/or a key agreement procedure is performed for the user device over the wireless radio interface using the received further secret key in the radio access network system and the derived further secret key in the user device.
US10299112B2

Certain aspects of the present disclosure provide a method for confirming identity of a user equipment (UE) registered in both a wireless local area network (WLAN) and WWAN. A method is provided for wireless communications by a base station (BS). The method generally includes establishing communications with a first UE, wherein the UE is identified by a first set of one or more identifiers in a wide area wireless network (WWAN) and by a second set of one or more identifiers in a wide local area network (WLAN), and determining, based on the first and second set of identifiers, a UE connected to the WWAN and WLAN is the first UE.
US10299108B2

A mobile communications network communicating data to/from communications devices, the network including base stations operable to provide a wireless access interface to communications devices; communications devices operable to communicate packets with the base stations via the wireless access interface; packet gateways operable to transmit user data packets received via the base stations from/to the communications devices; and mobility managers operable to send/receive signalling packets for controlling user data communications between communications devices and packet gateways. The mobility managers can, upon receiving a signalling packet from a communications device and including user data intended for a destination, detect the packet is not associated with any established signalling connection between the mobility managers and the communication device. The mobility managers can, responsive to the detection, transmit the user data in the signalling packet to the destination. Accordingly a short message may be sent in a reduced context or context-less manner.
US10299105B2

A device that includes one or more processors may receive instructions to scan, at a given time, one or more channels in one or more frequency bands for presence of wireless devices in an environment of the device. The device may also identify one or more operations of the device that are occurring at the given time. The device may also adjust a duration of scanning the one or more channels based on the identified operations. The device may also cause a wireless receiver of the device to scan, for the adjusted duration, the one or more channels for the presence of the wireless devices.
US10299103B2

This disclosure provides systems and methods for providing an emergency alert notification. An electronic communication device can receive, from an alert generation device, a low power advertising packet responsive to an action performed on the alert generation device. Before the action is performed, the alert generation device can be in a low power state, such as a sleep state, to conserve battery. The action can cause the alert generation device to transition from the low power state to a second state in which the alert generation device begins transmitting the advertising packet. The electronic communication device can identify at least one emergency contact to receive an alert based on a contact policy and can determine an alert type based on the contact policy. The electronic communication device can generate the alert including a request for assistance and can transmit the alert to the at least one emergency contact.
US10299100B2

A method and system includes the ability for individuals to set up an ad hoc digital and voice network easily and rapidly to allow users to coordinate their activities by eliminating the need for pre-entry of data into a web or identifying others by name, phone numbers or email. This method is especially useful for police, fire fighters, military, first responders or other emergency situations for coordinating different organizations at the scene of a disaster to elevate conventional communication problems either up and down the chain of command or cross communication between different emergency units. The method and system provides that the users are only required to enter a specific Server IP address and an ad hoc event name, a password and perhaps the name of the particular unit.
US10299099B2

Methods and apparatus, including computer program products, are provided for emergency call handling. In one aspect there is provided a method. The method may include receiving, at a user equipment, an indication from a network, the indication representative of at least one of whether a carrier grade voice over cellular packet data call is available at a cell serving the user equipment or whether an over-the-top service is available at the cell serving the user equipment; and initiating, by the user equipment based on the received indication from the network, a call via the over-the-top service, when the indication represents the carrier grade voice over cellular packet data call is not available at the cell serving the user equipment and the over-the-top service is available at the cell serving the user equipment. Related apparatus, systems, methods, and articles are also described.
US10299087B2

A method performed by, and a system embedded within, a communication device operating in a communication network, performing the steps of: obtaining a plurality of caller identification codes for the caller device, where each of the caller identification codes identifies the caller device in a network; obtaining at least one rule for selecting a caller identification code from the plurality of caller identification codes according to a characteristic of the called device; obtaining a characteristic of the called device; selecting a caller identification code from the plurality of caller identification codes according to the characteristic of the destination telephone identification, or caller environment or destination environment parameters, or caller decision on the time of making the call; and forwarding the selected caller identification code to any of another communication network and a terminal device of a communication network.
US10299086B1

Receiving short message service (SMS) messages and providing a response report based at least in part on the received SMS message is disclosed. A user equipment (UE) may receive an SMS message via a communications link between the UE and mobile a mobile communications network. The UE may be configured to determine if the SMS message was received with or without error. Based at least in part on this determination, the UE may generate the response report to provide to the mobile communications network. The UE may further identify that the communications link between itself and the mobile communications network may be severed. As a result, the UE may reestablish the communications link with the mobile communications network and then transmit the response report.
US10299083B2

Disclosed are: a method for providing continuity of a multimedia broadcast multicast service (MBMS) service, and a device supporting the same. The method may include: entering a radio resource control (RRC) connected state with respect to a first cell; receiving MBMS-related system information from the first cell; determining whether a mobility condition for continuity of an MBMS service is satisfied based on the received system information; and entering an RRC idle state when it is determined that the mobility condition is satisfied, and the UE does not supports a handover operation.
US10299077B1

A server including data loading, data analysis, transformation and cleaning (TAC), and position estimation modules. The data loading module loads original position data (OPD) sets. OPD points of the OPD sets refer to positions of a wireless device in communication with a wireless station. The data loading module loads each OPD set based on an identifier of the wireless station in a corresponding one of the OPD sets. The data analysis module: determines an overall bounding area based on the OPD points; divides the overall bounding area into minimum bounding areas; and assigns the OPD points to the minimum bounding areas. The TAC module: transforms and cleans some of the OPD points to provide updated points, such that the updated points have a less number of points than the some of the OPD points. The position estimation module estimates a position of the wireless device based on the updated points.
US10299071B2

A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel.
US10299070B2

An application server may receive, from an administrative console, a message and a targeting specification. The targeting specification identifies at least one trait (e.g., ticket type, age, gender) shared by a group of targeted venue guests. The group of targeted venue guests is a subset of the plurality of venue guests of a venue. The application server then uses information obtained from venue guest devices corresponding to venue guests to identify who belongs to the group targeted venue guests as well as their corresponding targeted venue guest devices. The application server then transmits a message to the targeted venue guest devices. The message may further be transmitted according to a schedule set or triggers by the administrator console. The schedule may identify dates and times within which messages should be sent, while the triggers may identify locations that may trigger messages.
US10299059B1

In an embodiment, a monitor mixing system is provided in which a stage plot of the positions of the musicians and their instructions may be supplied. Based on the relative locations of a given musician who is monitoring the mix and the other musicians/instruments, the monitor mixing system may generate a mix that incorporates modifications to make the sound appear to be three dimensional. That is, the source of the sound may be experienced by the musician as if the sound is being heard from the location of the musician/instrument.
US10299057B2

A method for processing an audio signal is performed at a computing device. The method includes the following steps: receiving a digital stereo audio input signal; extracting localization cues from the digital stereo audio input signal; generating a left-side component and a right-side component from the digital stereo audio input signal, at least partially, in accordance with the localization cues; performing crosstalk cancellation to the left-side component and the right-side component, respectively, to obtain a crosstalk-cancelled left-side component and a crosstalk-cancelled right-side component; and generating a digital stereo audio output signal including the crosstalk-cancelled left-side component and the crosstalk-cancelled right-side component.
US10299054B2

An audio playback device comprises a microphone, a speaker, and a processor. The processor is arranged to output by the speaker first audio content and receive by the microphone an indication of the first audio content. A first acoustic response of a room in which the audio playback device is located is determined based on the received indication of first audio content. A mapping is applied to the first acoustic response to determine a second acoustic response. The second acoustic response is indicative of an approximated acoustic response of the room at a spatial location different from a spatial location of the microphone. The second audio content output by the speaker is adjusted based on the second response.
US10299050B2

An assistive listening device that comprises a receiver for a digital signal that is tuned to receive a particular digital signal and a connector that includes a permanently mounted Apple Lightning or a mini/micro type-B or type-C USB connector or a standard type-A USB connector that serves as a conduit for a digital signal to a recoding or retransmittal device and as a conduit for transferring power to the mobile assistive listening device.
US10299036B2

A multi-diaphragm planar magnetic electro-acoustic transducer is provided, having a plurality of diaphragms arranged in one or more diaphragm modules. Each diaphragm comprises a substrate and at least one electrically conductive circuit on at least one surface of the substrate. Each diaphragm module comprises at least one diaphragm, each held taut by a frame. Each diaphragm module is disposed to one side or the other of at least one planar magnetic array, the diaphragm module being parallel to and aligned with the planar magnetic array to form the multi-diaphragm planar magnetic transducer. The planar magnets many have a vertical arrangement, a sideways arrangement, a staggered arrangement, and may comprise stators and/or a low reluctance backing plate or channel piece. The planar magnet arrays can be linear or circular.
US10299025B2

An electronic wearable device includes an electrical cord for carrying electrical signals. An electrical power module includes an interface for detachable connection to the electrical cord. A first audio module includes an interface for detachable connecting to the electrical cord. A second audio module includes an interface for detachable connecting to the electrical cord. The electrical cord is configured to support the first audio module and the second audio module thereon. A controller module controls the first audio module and the second audio module.
US10299020B2

A method and apparatus for signal processing by light waveform shaping are provided to process an uplink signal generated by a digital-to-analog converter (DAC) and/or process a downlink signal to be transmitted to an analog-to-digital converter (ADC). The method includes adjusting the waveform of the uplink signal and/or the waveform of the downlink signal with a light waveform shaping module so that, even if the DAC and/or ADC has a low sampling rate and a narrow bandwidth, a high-frequency signal portion of the uplink signal and/or a high-frequency signal portion of the downlink signal can be preserved.
US10299018B1

Devices and meters comprising: a housing configured to mount to a pole supporting an existing meter, the housing defining an interior; a sensor within the interior of the housing, the sensor configured to collect environmental information pertaining to the local external environment of the existing meter; a wireless radio within the interior of the housing, the wireless radio configured to transmit the environmental information to the existing meter or to a remote server in communication with the existing meter; a power unit within the interior of the housing, the power unit supplying power to the sensor and the wireless radio.
US10299017B2

In one embodiment, captured video summaries are tagged with metadata so the videos can be easily searched. The videos are classified into different scenes, depending on the type of action in the video, so searching can be based on the type of scene. In one embodiment, tags are provided for moving objects or people. The type of object that is moving is tagged (car, ball, person, pet, etc.). Video search results are ranked based on the weighting of the video events or video summaries. The video summary weighting focuses on important events, with multiple videos/images over a period of time condensed into a short summary video. This creates a weighted video summary with different time-lapse speeds that focuses on important events.
US10299015B1

Techniques are described for temporally targeted content placement for video content. A time mark that is associated with a sponsored-content trigger may be accessed. Presentation of a sponsored-content item is triggered based on the sponsored-content trigger associated with the time mark such that the sponsored-content item is presented at a point of time substantially in accordance with the time mark.
US10299011B2

An interactive video including frames which include objects is displayed on a client computing device. A set of the objects in the interactive video has been linked to internet-accessible information external to the video during creation of the interactive video by comparing each of the objects in the interactive video with pre-defined objects stored in a database. The object is associated with internet-accessible information associated with the pre-defined objects when the object is determined to be similar to the pre-defined object. While the interactive video is playing on the display, a selection of one of the objects shown in the interactive video is received. In response to the selection, internet-accessible information linked to the selected object is displayed, where the internet-accessible information includes at least one of a link to an online e-commerce site that sells the selected object, and an advertisement associated with the selected object.
US10299008B1

Embodiments of the present invention provide a computer-implemented method for generating closed captions via optimal positioning and character specific output styles. The method includes receiving a video input. The method generates closed caption data from the video input based at least in part on extracting text data from an audio portion of the video input. For each given frame of the video input that has closed caption data associated with the given frame, one or more characters who are speaking in the given frame are identified via facial recognition and audio tone matching. A respective text style for each given character that uniquely identifies the given character from the one or more identified characters is obtained. Captioning in the respective text style of each of the one or more identified characters is generated. The generated captioning is then inserted into the given frame.
US10299005B1

Linear content holds great value to consumers, and by delivering it to consumers on demand, service providers can improve the user experience for their consumers. A consumer requests linear on demand content by selecting channels and time ranges or content items, or bundles thereof, which the service provider broadcasts as linear content. The requested content is broadcast, and repackaged as an unbroken block of content for the consumer during the requested time range or the duration of the content item. By repackaging the linear on demand content, the service provider may provide greater options to consumers without significantly increasing the amount of bandwidth used in its network to deliver that content. Channel guides and viewing features are tailored for the requested content to further improve the user experience.
US10299004B2

A method for communication is described. The method includes providing a channel configured for collecting and editing video associated with a topic. The method includes identifying a plurality of potential parties connected with the topic. The method includes pushing a plurality of invitations to the plurality of potential parties, wherein each invitation comprises a request to join the channel. The method includes receiving a plurality of video feeds on the channel from a plurality of contributors each accepting a corresponding invitation. The method includes editing the plurality of video feeds to generate an edited video.
US10299000B2

Embodiments of mechanisms for dynamic media content type streaming management for mobile devices are generally described herein. In some embodiments, the mobile device may receive selection input pertaining to generating output from a media file containing at least two of audio data, video data, and closed-captioning data, the selection input selecting at least one of audio, video, and closed-captioning to be output during play of the media content. In some embodiments, the mobile device may generate an audio output as a signal in response to the selection input including audio. In some embodiments, the mobile device may generate a video output as a signal in response to the selection input including video. In some embodiments, the mobile device may generate a closed-captioning output as a signal in response to selection input including closed-captioning.
US10298997B2

Methods for uploading a file to a television set and playing a file, television set and user equipment are disclosed. The method for uploading a file to a television set includes: sending by a browser in a User Equipment, UE, a request to the television set to obtain a file upload page, wherein the request carries a Uniform Resource Locator, URL, address of the file upload page; and receiving by the browser in the UE the file upload page with which the television set responds, and uploading at least one file through the file upload page to the television set.
US10298992B2

An information processing apparatus and server apparatus are disclosed. In one example, the information processing apparatus is configured to display content on a first display and transmit an instruction to display the content, which is being displayed on the first display, on a second display of a first external device. This instruction causes a displaying of the content at a specified playback start point on the second display.
US10298988B2

Methods and systems for providing content. A selection of a single virtual channel may be received from the user. Virtual programming data for the single virtual channel may be accessed. The virtual programming data may define content to be provided over the single virtual channel. The content may be provided over the single virtual channel in accordance with the virtual programming data.
US10298977B2

A request is received from one of a plurality of terminals in a service group of a video content network. The request is to establish a session with a head end of the network. The video content network provides at least first and second different categories of sessions to the service group. The request is evaluated against a policy. The policy specifies a maximum utilization threshold for sessions of the first category and a maximum utilization threshold for sessions of the second category. The request is granted if it is in conformance with the policy. The method may be carried out, for example, with a session resource manager apparatus.
US10298974B2

A method and device are disclosed for presenting content data (such as a video, an audio and a Flash) from a network. In content-related information (such as a webpage file) of related content data from a network, a plurality of content data sources are often provided for the same content. A weighted value is respectively set for each content data source based on the content-related information. Based on the weighted value of each content data source, a content data source is selected so as to present the content data. The weighted values can be set by considering various factors. In an embodiment, in consideration of different supporting capacities of a terminal system for different types of content data, the weighted values are set according to an MIME type of the content data sources.
US10298971B2

In one embodiment, a method encodes a first set of segments of a media file based on a first bitrate range to generate a first set of encoded segments. It is then determined when an encoded segment for the first bitrate range includes a bitrate that satisfies a second bitrate range. When the encoded segment for the first bitrate range includes the bitrate that satisfies the second bitrate range, the method does not encode a segment in the first set of segments that corresponds to the encoded segment when the media file is encoded based on the second bitrate range to generate a second set of encoded segments for the second bitrate range. A first playlist for the first bitrate range is identified and a second playlist for the second bitrate range is identified. The second playlist also includes the encoded segment that was encoded for the first bitrate range.
US10298959B2

The present invention relates to a method for modifying a binary video stream encoded according to a video coding algorithm comprising a prediction loop and in-loop post-filtering integrated in the prediction loop. The method comprises the following steps performed by a device: seeking a syntax element relating to the in-loop post-filtering in the binary video stream, the syntax element being used by a decoding device for controlling a complexity of implementation of the in-loop post-filtering; modifying (321, 323, 325) a value of the syntax element or eliminating (321, 323, 325) the syntax element.
US10298956B2

A method and apparatus for significance map context selection are disclosed. According to the present invention, the TUs are divided into sub-blocks and at least two context sets are used. Non-DC transform coefficients in each sub-block are coded based on the same context, context set, or context formation. The context, context set, or context formation for each sub- block can be determined based on sub-block index in scan order, horizontal sub-block index, vertical sub-block index, video component type, TU width, TU height, or any combination of the above. In one embodiment, the sum of the horizontal and the vertical sub-block indexes is used to classify each sub-block into a class and the context, context set, or context formation is then determined according to the class.
US10298953B2

A moving image encoding/decoding system may include a video predictive encoding device, which may include: an encoding device which encodes each of a plurality of input pictures to generate compressed picture data including a random access picture, and encodes data about display order information of each picture; a restoration device which decodes the compressed picture data to restore a reproduced picture; a picture storage device which stores the reproduced picture as a reference picture; and a memory management device which controls the picture storage device. Following completion of an encoding process of generating the random access picture, the memory management device refreshes the picture storage device by setting every reference picture in the picture storage device, except for the random access picture, as unnecessary immediately before or immediately after encoding a picture with display order information larger than the display order information of the random access picture.
US10298952B2

There are provided methods and apparatus for motion skip mode with multiple inter-view reference pictures. An apparatus includes an encoder for encoding an image block relating to multi-view video content by performing a selection, for the image block, of at least one of an inter-view reference picture list from a set of inter-view reference picture lists, an inter-view reference picture from among a set of inter-view reference pictures, and a disparity vector from among a set of disparity vectors corresponding to the inter-view reference picture. The encoder extracts motion information for the image block based on at least one of the inter-view reference picture list, the inter-view reference picture, and disparity vector.
US10298947B2

A method of encapsulating an encoded bitstream representing one or more images includes providing description of images and/or sub-image picture, providing composed picture description, and outputting the bitstream. The description of images and/or sub-image pictures identifying portions of the bitstream representing the images and/or sub-images of the one or more images is provided. The composed picture description of at least one composed picture formed by one or more images and/or sub-image pictures also is provided. The bitstream, together with the composed picture description, is output as an encapsulated data file.
US10298942B1

A system configured to preform pre-compression on video sequences within a transform space to improve the compressibility of the video sequence during standard video encoding. In some cases, the pre-compression is configured to prevent the introduction of perceivable distortion into the video sequence or to substantially minimize the introduction of perceivable distortion. In some examples, a transform-Domain video processor may pre-compress or pre-process the video sequence in one, two, or three dimensional blocks or sequences using models of human visual contrast sensitivity.
US10298941B2

A video encoding device includes a coded data transcoding section 131 for transcoding first coded data generated by a first video encoding section 11 to generate second coded data, wherein the coded data transcoding section 131 includes: a prediction mode adding section 1312 for generating intra prediction modes unusable by the first video encoding section 11 and usable by a second video encoding section 14; and a prediction mode selecting section 1313 for evaluating the prediction modes generated by the prediction mode adding section 1312 and, based on the evaluation results, selecting a prediction mode used by the second video encoding section 14.
US10298934B2

A system and method for stitching separately encoded MPEG video fragments, each representing a different rectangular area of the screen together into one single full-screen MPEG encoded video fragment.
US10298921B1

A superstereoscopic display with enhanced off-angle separation includes a first light source; a lenticular lens optically coupled to the first light source that, with the first light source, generates a first light output having viewing angle dependency; and a high-index optical volume optically coupled to the lenticular lens.
US10298918B2

Provided is an image projection apparatus including: one or more light sources; one or more illumination optical systems; a first reflection-type light valve group including three light valves and being configured to modulate incident light based on first image information; a second reflection-type light valve group including three light valves and being configured to modulate incident light based on second image information; a first prism-type photosynthesizing member having a function of synthesizing, on one optical axis, light that is reflected by the first reflection-type light valve group; a second prism-type photosynthesizing member having a function of synthesizing, on one optical axis, light that is reflected by the second reflection-type light valve group; and a prism-type beam splitter configured to synthesize, on one optical axis, light that has been reflected by the first reflection-type light valve group and light that has been reflected by the second reflection-type light valve group.
US10298908B2

A display system for use in a vehicle is disclosed including a camera configured to capture frames corresponding to a field of view. The camera is in communication with a processing unit configured to receive data representative of objects within the captured frames from the camera. A display is in communication with the processing unit which is configured to display objects based on the data representative of the captured frames received by the processing unit. Multi-frame capture is utilized with differential inter-frame illumination to provide low-visibility object detection and display. Adverse environmental conditions whereby image display is enhanced include fog, rain, snow, dust, nighttime, and high-glare scenarios.
US10298907B2

A method of sharing documents is provided. The method includes capturing first image data associated with a document, detecting content of the document based on the captured first image data, capturing second image data associated with an object controlled by a user moved relative to the document, determining a relative position between the document and the object, combining a portion of the second image data with the first image data based on the determined relative position to generate a combined image signal that is displayed, and emphasizing a portion of the content in the displayed combined image signal, based on the relative position.
US10298906B2

A camera attachment apparatus for attaching to a mobile computing device having an integrated camera includes a house, a slide plate, an aperture, and an illumination system. The housing has a shape to mount on the mobile computing device. The slide plate is disposed within the housing and has a stowed position and a deployed position. The aperture is disposed in the slide plate. The illumination system is disposed on the slide plate. The slide plate is configured to align the aperture over the integrated camera when moved to the deployed position and does not obstruct the integrated camera in the stowed position.
US10298900B2

The present invention provides a method for determining a local oscillator frequency for a baseband converter, comprising obtaining characteristics of a channel comprising a plurality of radio signals at corresponding radio frequencies; using the channel characteristics to select a local oscillator frequency to use in baseband conversion of the plurality of radio signals of the channel to form a first baseband converted signal and a second baseband converted signal; and programming a local oscillator to operate the selected local oscillator frequency; wherein the local oscillator frequency is selected such that an image rejection ratio of the baseband converted second signal to an image of the baseband converted first signal is above a predetermined threshold.
US10298897B2

Method wherein each image of the content is transformed using at least one pre-transformed image which is associated with a key image of this content wherein, from each key image and an associated pre-transformed image, a color transform is derived, and wherein each color transform is applied to a selection of images of this content which is associated with said key image. Applied to a content broadcast system comprising a server and a receiver to which are connected several types of display devices, the invention advantageously makes it possible to adapt the content to these different types.
US10298895B1

Disclosed herein is a method and system for performing context-based transformation of a video. In an embodiment, a scene descriptor and a textual descriptor are generated for each scene corresponding to the video. Further, an audio context descriptor is generated based on semantic analysis of the textual descriptor. Subsequently, the audio context descriptor and the scene descriptor are correlated to generate a scene context descriptor for each scene. Finally, the video is translated using the scene context descriptor, thereby transforming the video based on context. In some embodiments, the method of present disclosure is capable of automatically changing one or more attributes, such as color of one or more scenes in the video, in response to change in the context of audio/speech signals corresponding to the video. Thus, the present method helps in effective rendering of a video to users.
US10298883B2

A management apparatus is configured to, when a connection request specifying, as a communication partner, a communication apparatus or an information processing apparatus has been received from a partner apparatus, transmit a connection request to a communication apparatus. The communication apparatus is configured to transmit a reception notification message to the management apparatus, when the connection request has been received. The management apparatus is configured to, when the reception notification message has been received from the communication apparatus, identify the information processing apparatus that is in cooperation with the communication apparatus that is a transmission source of the received reception notification message, and transmit the reception notification message to the identified information processing apparatus. The information processing apparatus is configured to receive an approval operation for approval of reception or a denial operation for denial of reception, when the reception notification message has been received.
US10298881B2

A communication terminal receives, from a mobile terminal, first terminal identification information for identifying a first communication terminal that is located remotely from the communication terminal, the mobile terminal being a mobile terminal that has obtained the first terminal identification information from the first communication terminal, determines the first communication terminal identified with the first terminal identification information as a communication destination, and starts communicating with the first communication terminal.
US10298871B2

An image sensor may contain an array of imaging pixels arranged in rows and columns. Each column of imaging pixels may be coupled to a column line which is used to read out imaging signals from the pixels. The column line may be coupled to an analog-to-digital converter for converting analog imaging signals from the pixels to digital signals. An amplifier may be included to amplify the analog imaging signals before being converted by the analog-to-digital converter. However, amplifier gain uncertainties may lead to errors in the result of the analog-to-digital conversion when the analog imaging signals are amplified by an amplifier. To mitigate these types of errors, the reference voltage for a digital-to-analog converter in the analog-to-digital converter may also be amplified by the amplifier. By multiplying the reference voltage by the same amplifier gain as the imaging signals, uncertainties in the amplifier gain will not affect the results of the analog-to-digital conversion.
US10298868B2

An image sensing device includes: a pixel array suitable for generating a plurality of pixel signals corresponding to incident light; a comparison block suitable for comparing the pixel signals with a ramp signal to generate a plurality of comparison signals; a logic block suitable for adjusting slew rates of the respective comparison signals to generate a plurality of logic signals; a global count block suitable for generating a global count signal; and a storing block suitable for storing counted values of the global count signal based on the logic signals received from the logic block.
US10298858B2

A device for generating thermal images includes a low resolution infrared (IR) sensor supported within a housing and having a field of view. The IR sensor is configured to generate thermal images of objects within the field of view having a first resolution. A spatial information sensor supported within the housing is configured to determine a position for each of the thermal images generated by the IR sensor. A processing unit supported within the housing is configured to receive the thermal images and to combine the thermal images based on the determined positions of the thermal images to produce a combined thermal image having a second resolution that is greater than the first resolution.
US10298853B2

An image processing apparatus including a recording unit configured to acquire a plurality of image data and record the plurality of image data in a recording medium includes an acquisition unit configured to acquire depth distribution information of an object corresponding to image data, and a control unit configured to perform a process of recording the plurality of image data by performing switching between a first mode in which the recording unit records the image data and the depth distribution information corresponding to the image data in the recording medium and a second mode in which the recording unit records the image data in the recording medium without recording the depth distribution information.
US10298848B2

The present invention discloses a motor, a gimbal including the motor and an aircraft including the gimbal. The motor includes a base, a rotation shaft, a stator assembly, a first bearing, a stator bearing and a rotor assembly that is used for driving an external member to rotate. The rotation shaft has a first end portion, a second end portion and a middle portion connecting the first end portion to the second end portion. The base is connected to the first end portion by using the first bearing. The rotor assembly is connected to the middle portion. The stator bearing, the rotor assembly and the first bearing are sequentially arranged along an axial direction of the rotation shaft. The stator assembly is connected to the rotation shaft by using the stator bearing.
US10298844B2

An image processing apparatus detects predetermined information from an image signal and output a detection signal indicating the detected information, stores the detection signals for a plurality of periods, calculates a first prediction value based on a predetermined number of detection signals, from a newer one to older ones excluding a latest detection signal, stored in the storage unit, calculates a coefficient based on a difference between the first prediction value and a value of the latest detection signal, calculates a second prediction value based on the coefficient and the predetermined number of detection signals, from the latest one to older ones, and generates, based on the second prediction value, a control signal for controlling a predetermined constituent member.
US10298832B2

A vehicle camera system and method for operating a vehicle camera system comprising a vehicle camera with communication capabilities. The vehicle camera operating in conjunction with other components to provide information to users. The vehicle camera system compiles information from multiple components into a single repository of video recordings with information, such as location information, vehicle status and diagnostic information, alert information and other information.
US10298826B2

Mechanisms for spatially isolating a region of interest (ROI) in a scene. A first sensor generates sensor data that quantifies energy received from a scene within a field of view (FOV) of the first sensor to generate a real-time FOV full motion video. A processor analyzes the sensor data to identify a first ROI during a wait period of a frame period of the first sensor. A first subset of micromirrors in a micromirror array that is directed toward the scene is identified. The first subset of micromirrors receives energy from the first ROI. A micromirror in the first subset is controlled to move from a primary position of the at least one micromirror to a first tilt position of the micromirror to reflect the energy from the first ROI toward a second sensor, the first ROI being spatially isolated from the real-time FOV full motion video.
US10298825B2

Apparatuses and methods are provided for storing information related to objects associated with a hand of a user via a wearable camera system. In one implementation, a wearable apparatus for storing the information is provided comprising a wearable image sensor configured to capture a plurality of images from the environment of the user, and at least one processing device programmed to process the images. The processing device may detect the hand of the user, and an object associated with the user's hand. The processing device may proceed to store information related to the object. Consistent with disclosed embodiments, the stored information may be used for various purposes, such as warning the user of dangers, catering advertising to the user, and helping the user find objects when they are lost.
US10298823B2

A camera assembly for a vehicle vision system includes a housing having a first housing portion and a second housing portion, with a circuit element disposed within the first housing portion. The second housing portion has a connector portion configured for connecting to a vehicle wiring when the camera assembly is installed at a vehicle. A coaxial connector is disposed at the connector portion of the second housing portion. The coaxial connector includes a plurality of electrical coaxial connector elements. Each of the electrical coaxial connector elements has (i) a first end that is configured for electrically connecting to circuitry of the circuit element within the first housing portion and (ii) a second end that is configured for electrically connecting to the vehicle wiring.
US10298821B2

A camera module system for a vehicle, an image pickup device, and a method. The camera module system including a lens holder, a case, a first engaging part, and a second engaging part. The lens holder is configured to mount a lens, the lens holder having a first surface that is perpendicular to an optical axis of the lens. The case is configured to mount the lens holder, the case having a second surface that faces the first surface. The first engaging part is on the first surface, the first engaging part including a plurality of first projections. The second engaging part is on the second surface, the second engaging part including a plurality of second projections. The first engaging part is engaged with the second engaging part when the plurality of first projections is engaged with the plurality of second projections.
US10298814B2

A portable vehicle alignment system is provided having two base tower assemblies, each having a pedestal, a columnar tower removably attachable to the top of the pedestal, and a camera pod movable along a length of the tower; and a data processor with a wireless communication device for processing image data from the camera pods. Each camera pod includes a camera for capturing image data of a target mounted on a vehicle, and a communication device for wirelessly communicating with the data processor. One pod has a calibration target and the other pod has a calibration camera for capturing images of the calibration target. The pedestals each have a manually-operated clamp for removably fixedly attaching the tower to the pedestal in one of a plurality of positions such that the orientation of the camera pod to the pedestal is angularly adjustable, allowing horizontal rotation of the camera pod.
US10298812B2

A temporary dot pattern at a dot pattern determining target gradation is determined by adding or removing dots as much as the number of dots corresponding to a gradation difference to or from a dot pattern at a gradation at which a dot pattern is already determined, and a dot pattern at a dot pattern determining target gradation is determined by performing a replacement process of replacing dots including some of dots at a dot pattern determined gradation among the dots in the temporary dot pattern with non-dot arrangements. A halftone mask may be constituted by a group of dot patterns at each gradation, or the halftone mask may be constituted by setting a dot pattern for each gradation as a threshold value.
US10298810B2

An authentication device includes: an image capturing unit that captures an image of a person around an apparatus including the authentication device; an authentication unit that performs authentication by a facial image captured by the image capturing unit; and a selection unit, when the image capturing unit captures facial images of plural persons, that selects a facial image of a person who is determined to have a high possibility of using the apparatus from the facial images of the plural persons.
US10298805B2

A non-transitory computer-readable medium having a computer program stored thereon and readable by a computer of a portable device, the computer program, when executed by the computer, causes the portable device to perform operations including: receiving a user operation of designating operation specifying information; instructing an image processing apparatus to execute the image processing operation of a content specified by the operation specifying information; storing history information indicative of an execution history of the receiving and the instructing; extracting, from among a plurality of program identification information, program identification information associated with the extraction condition information coinciding with the stored history information; and displaying the extracted program identification information.
US10298802B2

A scanner includes a generator that synthesizes output of a first sensor group and output of a second sensor group where the image data overlaps in part, and generates image data; and a controller that controls the second sensor group to synthesize and output the output of n photoelectric conversion elements at positions based on the relative positions of the first sensor group and second sensor group.
US10298797B2

Sealability between a cover member and a transparent member of an optical scanning apparatus is improved to improve dustproof performance. An optical scanning apparatus includes an elastic member 75 for sealing a portion between a cover member 70 and a glass member 90, the elastic member 75 being formed on the cover member 70 so as to surround an opening portion 42, the elastic member 75 being formed from a material that differs from that of the cover member 70. The elastic member 75 has a protrusion 75a that extends towards the glass member 90. The protrusion 75a fills a gap between the cover member 70 and the glass member 90 by contacting the glass member 90 and being elastically deformed.
US10298796B2

An information processing apparatus including: a sound wave sensor that outputs a sound wave and receives a reflected wave of the output sound wave; a control unit configured to measure an amplitude of a sound wave, at predetermined time intervals, which is received by the sound wave sensor after the sound wave sensor outputs a sound wave; and a power control unit configured to shift the information processing apparatus from a first power state into a second power state where power consumption is larger than that in the first power state, on a basis that the amplitude of the sound wave measured by the control unit is larger than or equal to a threshold value, wherein in a case where a number of times amplitude of a sound wave measured by the control unit is larger than or equal to the threshold value during a predetermined period of time is larger than or equal to a predetermined number of times, the control unit maintains the power state of the information processing apparatus in the first power state.
US10298792B2

An image forming device, which is included in an image forming apparatus, includes an image reader, a sheet conveyance passage, a transparent body, an opposing body, and multiple curved opposing portions. The image reader is configured to read an image formed on a target object. The sheet conveyance passage is a passage through which the target object is conveyed. The transparent body is disposed between the sheet conveyance passage and the image reader. The opposing body is disposed facing the transparent body on a side opposite the image reader. The multiple curved opposing portions have respective outwardly curving reference planes. The multiple curved opposing portions are sequentially switched and located at a predetermined image reading position at which the multiple curved opposing portions face the transparent body with a gap through which the target object passes the predetermined image reading position.
US10298785B2

A system according to the present invention includes a first communication unit, a second communication unit, and an executing unit. The first communication unit is connected to a first network segment. The second communication unit is connected to a second network segment different from the first network segment, and receives a processing request, which requests to execute predetermined processing, from an apparatus via the second network segment and transmits the received processing request to the first communication unit. The executing unit executes the predetermined processing in response to the processing request received by the first communication unit.
US10298775B1

A system for selecting communication routes based on multiple criteria is disclosed. The system can dynamically update route ranking criteria without loading new data tables. Further, the system can be implemented in the context of a route ranking system that provides a list of routes for processing or completing a call. The list of routes can be generated in a ranked order to facilitate attempts to route the call based on the predefined routing criteria. Further, the route ranking system can determine the list of routes based on one or more criteria including, for example, margins, call type, and vendor ratings, to name a few. Advantageously, modifications can be made to values associated with the routing criteria without requiring the loading of new tables associated with the routing criteria. These modifications can be associated with an expiration condition thereby enabling increased flexibility in determining the list of routes.
US10298774B2

A system and method in various embodiments implements a virtual spectrum band stacking technique facilitating spectrum sharing by converting and combining spectrum bands consisting of several different RF channels, common air interfaces, and radio channel protocols in the radio frequency channel domain to form IP Virtual Radio Channels (IP-VRCs) in the packet data domain. This virtual spectrum stacking technique combines the transmissions of contiguous and non-contiguous RF channels with differing physical layers into IP-VRCs. This technique enables simultaneous parallel high-speed wireless transmission; virtual radio channel hopping for enhanced security; and customized security schemes for different IP-VRC Groups. The deployment of the combination of IP-VRC Groups; Universal “Small Cell” Base Stations; and Universal Wireless End-Point Devices allows the aggregation of all available spectrum bands for use within a building environment. Some benefits of this deployment include expansion of spectrum utilization, service quality, security, applications and transmission throughput for wireless end-point devices.
US10298773B2

Systems and methods for connecting and disconnecting to a DSL ring are provided. A cross connect node is used to connect multiple endpoints into a DSL ring. When a given endpoint is powered down, a cross connect bypasses that endpoint such that the ring is maintained. POTS service is provided irrespective of whether the endpoint is bypassed for the purpose of the ring. The status of a bypassed node can be ascertained using baseband signalling.
US10298771B1

Each of a plurality of dwelling buildings includes a dwelling parent device, a management office parent device, and a building control unit communicatively connected to each dwelling parent device in the host building and the management office parent device in the host building via an intercom line. The building control units are interconnected via a network that is connected with a management center that includes a centralized management office parent device and a centralized control unit connected to the centralized management office parent device via the intercom line. The building control unit in each dwelling building can set a calling time zone in which it is possible to call the centralized management office parent device or the management office parent device of other building, in addition to the management office parent device in the host building. When there is a calling from the dwelling parent device in the set calling time zone, the management office parent device in the host building receives a calling signal from the dwelling parent device and the building control unit also receives the calling signal from the dwelling parent device and transmits the calling signal to the centralized management office parent device or the management office parent device of the other building.
US10298759B1

A method comprising: establishing a first session with a user; determining a unique identifier of the first session; generating a session identifier to identify the first session and storing it in a cache in association with the unique identifier; outputting an address and the session identifier, for delivery to the user; receiving an authentication request transmitted to the address from the user's first device, and in response, outputting a message to the first device, the message comprising the session identifier and an address at which a request for authentication by an authentication service can be directed; receiving an authentication success message comprising the session identifier and indicating authentication of the user; establishing a second session with a service agent; and in response to receiving the message, querying the cache with the session identifier to determine the unique identifier, and connecting the first and second sessions together using the unique identifier.
US10298748B2

The present subject matter relates to one or more devices, systems and/or methods for generating sealing current at a customer's premises or residence and injecting the sealing current into a DSL service provider's telephone cables to prevent the oxidation or corrosion of wire splices or connections on the telephone cables transporting DSL services. A cable pair stabilizer unit is connected at the customer's premises or residence, between the service provider's telephone cables and the customer's residential gateway/modem. The cable pair stabilizer unit comprises circuitry for generating the sealing current and for injecting the sealing current into the service provider's telephone cables transporting DSL services. The cable pair stabilizer unit may be combined with an AC/DC power supply adapter as a single, integrated device. The cable pair stabilizer unit may alternatively be combined with or inside of the Residential Gateway as a single, integrated device.
US10298736B2

A voice signal processing apparatus includes: an input unit which receives a voice signal of a user; a detecting unit which detects an auxiliary signal; and a signal processing unit which transmits the voice signal to an external terminal in a first operation mode and transmits the voice signal and the auxiliary signal to the external terminal using the same or different protocols in a second operation mode.
US10298729B2

A connector is formed by fixing two or more connector parts each made from a resin to each other by press fitting or with an adhesive. At least one weld part regulating thermal deformation between the connector parts is formed in a boundary portion between the adjoining connector parts.
US10298717B2

Aspects of the embodiments are directed to a network element that is configured for receiving, from an access point, a data packet originating from a client, the data packet comprising a packet header that comprises a packet header augmented with context information; decapsulating the packet header to identify the context information; applying a client-specific policy on the packet based, at least in part, on the context information; and forwarding the packet to a next hop in the network. The network element can be part of a network, such as a datacenter fabric architecture.
US10298709B1

Implementations are provided herein for utilizing the two-part nature of HDFS protocol communications received in a non-native HDFS environment to use discriminative information learned in the NameNode request to make the client experience more efficient. NameNode requests can be received by any node among a cluster of nodes. It can be appreciated that in some non-native HDFS, clients can communicate with any nodes among a cluster to perform transactions and need not first communicate with a NameNode. Thus, upon receiving a NameNode request, the non-native HDFS Cluster of Nodes can prefetch data necessary from stable storage to cache memory for efficient reads and/or writes, allocate space on disk for writes, assign the client to communicate with a specific node among the cluster of nodes based on available cluster resources, etc. In this sense, a more efficient client experience can be offered for HDFS clients within a non-native HDFS environment.
US10298702B2

Technologies are described for facilitating replay of requests for database operations. A plurality of requests for database operations are received. Each of the plurality of requests includes a type, an access unit identifier, and a chronological identifier. Execution dependencies are determined between the plurality of requests based on the type, access unit identifier, and chronological identifier of each of the plurality of requests. The execution dependencies are stored.
US10298696B2

According to a first aspect of the present invention there is provided a method of operating an Application Server (AS) that implements an IP Multimedia Subsystem (IMS) supplementary service for a user. The method includes configuring a rule for the user, the rule having an action specifying whether or not an announcement is to be provided and, if an announcement is to be provided, defining media to be used for the announcement. The method further includes determining if a condition of the rule is met by a Session Initiation Protocol (SIP) message relating to the user and, if so, implementing an announcement in accordance with the action.
US10298694B1

In general, techniques are described for performing flow timeout control within a network. A device comprising a processor may be configured to perform the techniques. The processor may be configured to, as one example, determine, from a first packet of a packet flow, a minimum timeout value for the packet flow indicative of a time duration during which a first computing device will not send a keep-alive message to prevent the packet flow from timing out. The processor may then determine an intermediate timeout value for the packet flow based on a comparison of the minimum timeout value to a maximum timeout value, and specify the intermediate timeout value in a second packet of the packet flow sent by the second network device to the first network device in response to the first packet.
US10298689B2

A method in a first network node for assisting an electronic device to benefit from a service provided by a cloud is provided. The first network node is comprised in the cloud. The first network node obtains information from the electronic device. The information comprises computation and storage capability of the electronic device. The first network node determines a push content based on the information. The first network node retrieves binary executable and content from one or more second network nodes comprised in the cloud. The binary executable and content are based on the push content. The first network node then pushes the binary executable and content to the electronic device. This is to enable the electronic device to benefit from the service of the cloud without accessing the cloud.
US10298679B1

A computing system is disclosed for reassigning ownership of a data object between computing nodes. A first computing node having control of a data object transmits a hand-off message indicating control of the data object is being transferred to a second computing node. The first computing node queues requests received at the first computing node relating to the data item. A third computing node that interacts with the data object receives the hand-off message and, in response, delays transmitting requests relating to the data object. The third computing node transmits an acknowledgment to the first computing node. Upon receipt of the acknowledgment, the first computing node communicates to the second computing node to assume ownership and transmits any requests that had queued at the first node. When the second computing node receives the message, it transmits a message claiming control of the data object. In response to the message claiming control, the third computing node transmits its queued requests relating to the data item to the second computing node.
US10298674B2

At least three different techniques are presented that facilitate cluster formation in clusterable devices such as drones. The techniques facilitate power saving in the individual clusterable devise as well as for the entirety of the cluster. The first technique utilizes a NAN application based cluster formation decision. The second technique initiates a cluster grade merging evaluation based on a “merge allowed” field in a synchronization beacon set by the discovery engine. The third technique involves a discovery engine managing cluster formation with pre-set cluster grade information.
US10298671B2

A load balancing device and method are provided. The load balancing device includes a processor. The processor is configured to receive a plurality of tasks from a plurality of user devices, each of the plurality of tasks involving a respective one of multiple sets of sessions. The processor is further configured to generate a task ID for each of the plurality tasks using a randomization function, at least one task ID for at least one of the plurality of tasks changing over time responsive to one or more criterion. The processor is additionally configured to allocate the plurality of tasks amongst a set of worker entities such that all the sessions involved in the plurality of tasks received from a respective same one of the plurality of user devices is assigned to a same one of the worker entities in the set.
US10298667B2

The invention relates to a method for a remote presentation between a first terminal (100) and at least one second terminal (200, 200′) connected via a network, including the steps of: generating (20) events during an action of a user on one of the peripherals of the first terminal, and sending said generated events to a machine controller (110) of the first terminal. The invention is essentially characterized by also including the steps of: sending (30) said generated events to a web server (300); and sending (40) said events from said web server (300) to at least one machine controller among the machine controller (210) of said second terminal (200) and the machine controller (410) of a video server (400), the configuration of which is compatible with that of the first terminal (100).
US10298662B2

There is presented a system for providing a content stored on a medium, the system comprising a media presentation module including a processor. The processor is configured to retrieve a content payload including a digital content from a data structure residing on the medium, and to retrieve a content-describing metadata stored separately from the digital content, from the data structure. The content-describing metadata provide content information including media encoding information for the digital content and a media profile information for the digital content. The content-describing metadata are configured to provide the content information to the media presentation module prior to rendering the digital content. In one embodiment, the processor is further configured to configure the media presentation module based on the media encoding information and the media profile information, and to present the content on a display.
US10298658B2

A communications system provides access to services when direct Internet connectivity is not practical. The system includes a beam modem and a beam API server. The beam modem receives a web request from a client device through a short range interface, modifies the request, and transmits the modified web request to the beam API server via a cellular connection. The beam API server then extracts an endpoint address and request data from the web request and determines an external web service from the endpoint address. The server transmits the request data to the external web service and, after receiving a response to the request data, reduces the size of the response data and sends it back to the beam modem via the cellular connection. The beam modem converts the response data to client device readable form and transmits it to the client device via the short range interface.
US10298654B2

Techniques are disclosed for automatically constructing a human-friendly and meaningful URL based on the content, context, or both, of the resource. An alternate URL can be constructed by analyzing and extracting keywords or other portions of content from a webpage automatically. The content of the webpage or other resource is obtained and analyzed using keyword extraction filters to derive one or more keywords that uniquely represent the content of the resource. An alternate URL is constructed based on the keywords. The keywords can be extracted from any portion of the content or from dictionary definitions or similar meanings of the content. The alternate URL is constructed such that it is unique among existing URLs. The alternate URL meaningfully represents the content, permitting the user to use or share the alternate URL on social media and elsewhere.
US10298645B2

A computer application streaming system includes an optimization unit coupled to a streaming device to determine streaming optimal playable settings for a remote user device corresponding to a selected computer application and a sending unit coupled to the optimization unit to manage streaming of the streaming optimal playable settings over a network connected to the remote user device. A receiving unit is coupled to the network to recover the streaming optimal playable settings for application to the remote user device when employing the selected computer application. An optional feedback unit is coupled to the remote user device to provide remote information over the network for modifying the streaming optimal playable settings, and an optional update unit is coupled to the streaming device to manage modification of the streaming optimal playable settings as directed by the remote information. A method of streaming a computer application is also provided.
US10298644B2

A communication server and accompanying communication devices allow near instantaneous communication between users of the communication devices. A communication device may be configured with multiple channels, where each channel is assigned a corresponding communication device. As the communication devices are registered with the communication server, each communication device has knowledge of other registered communication devices. Thus, communication devices may communicate nearly instantaneously with each other. Furthermore, as the communication device is equipped with multiple channels, a single communication device may host a conference call with other communication devices. In addition, communication device may include multiple buttons to control the communication device, and indicator lights to indicate the status of calls with other communication devices.
US10298641B2

A system processes streaming data and includes at least one processor. The system may write streaming data received from a data source as messages in queues at a queuing cluster. The queuing cluster includes a coordinator node to direct the messages to non-coordinator nodes of the queuing cluster. The system may retrieve the data from the queues based on subscription of topics and store the retrieved data in a consumable repository.
US10298640B1

In various embodiments, an audio streaming service may provide a plurality of channels. On a particular channel, different types of content can be streamed to audio devices connected to that channel, including channel content overlaid with group content and/or personalized content. Channel content refers to same content that is streamed to all of the audio devices that are connected to the channel. Group content refers to audio from a channel host or deejay that is overlaid on the channel content and may be provided to a select group of devices. In response to the group content, the audio streaming service may receive personalized content from some devices, such as user-generated content or responses, which may be used to generate individual content for the devices providing the personalized content. The group content, personalized content, or any other channel content may be overlaid with the channel content.
US10298628B2

Establishing or reestablishing media streams for handover of calls in a communication network where the server in the network can be addressed by the client from the access points of the network and for establishing a direct media path between endpoints in different network segments, which are interconnected by servers integrated with gateways.
US10298627B2

A system for transmitting encapsulated media over tunnels, in response to a first request from a first application, establishes a first tunnel between a first tunneling client of a user equipment (“UE”) and a tunneling server and establishes a first outer transport layer and a first outer network layer and establishes a local tunneling proxy. Further, the system, in response to a second request from a second application, establishes a second tunnel between the first tunneling client and the tunneling server, where the second request includes a request to use the first outer transport layer and the first outer network layer established in conjunction with the first tunnel, and the second request is forwarded to the tunneling server via the local tunneling proxy.
US10298626B2

A gateway device for use between a Fiber Channel over Ethernet (FCoE) network and a Fiber Channel (FC) storage area network (SAN) device includes a controller, at least one first native Fiber Channel F_Port in operable communication with the controller and configured to interface with a native Fiber Channel N_Port of the FC SAN device, and at least one first virtual N_Port (VN_Port) linked to the at least one first native Fiber Channel F_Port and in operable communication with the controller; the controller being configured to translate an FC FDISC received by the at least one first native Fiber Channel F_Port into an FIP NPIV FDISC and to send the FIP NPIV FDISC on the at least one first virtual N_Port (VN_Port) to establish another virtual link.
US10298614B2

Devices, systems, and methods of generating and managing behavioral biometric cookies. The system monitors user-interactions of a user, that are performed via an input unit of an end-user device; and extracts a set of user-specific characteristics, which are used as a behavioral profile or behavioral signature. The set of user-specific characteristics are further used as a behavioral biometric cookie data-item, allowing the system to distinguish between two human users that utilize the same electronic device; and allowing the system to distinguish between a human user and an automated script. The system further allows creation and utilization of behavioral sub-cookies that distinguish among multiple users of the same device. The system also allows creation of a cross-device behavioral cookie, to track browsing or usage history of a single user across multiple electronic devices.
US10298597B2

In an example embodiment, a system for evaluating published content is provided. The system includes at least one processor and a plurality of components including instructions executable by the at least one processor. The components include a reporting component and an evaluation component. The reporting component is to receive a communication from one of a plurality of users of a network-based system, the communication identifying content accessible via the network-based system as objectionable. An evaluation component is to evaluate the identified content based on a reputation value of the one of the plurality of users to determine an action to take with respect to the identified content. The reputation value is based at least in part on a history of objectionable content reporting by the one of the plurality of users.
US10298596B2

A trusted branded email method and apparatus in one aspect detects branded electronic messages and performs validation before it is sent to a recipient. In another aspect, an electronic messages is branded by embedding branding assets and validation signatures. Algorithms that generate validation signatures are dynamically selected to further strengthen the security aspects. Branding assets are presented to a user using a distinct indicia that represents to the user that the branding assets are secure.
US10298593B2

Embodiments of the present disclosure include a platform for a resource provisioning system. The platform can execute big data analysis techniques to access-right data to generate statistics that characterize a set of users. For example, characteristics of users who access resources events can be analyzed with varying levels of detail. The access-right data can include access right assignments, and data identifying the users to which access rights are assigned. In some implementations, spatial management systems can access the platform to generate statistics for the resources.
US10298591B2

An Open Authorization (OAuth) Client Secret of an application associated with a Multi-Tenant Application (MTA) deployed in a cloud-computing environment if read with a Fiori Launchpad (FLP) Deployer. The FLP Deployer writes, as content to a FLP Repository, the OAuth Client Secret and FLP Config data for the application read from a FLP Config data store. An App Router/shared FLP (App Router/FLP) accesses the FLP Repository to read content and OAuth Client Secrets for the application that has deployed to the App Router/FLP. A User Account and Authentication (UAA) service associated with the App Router/FLP is accessed to fetch an authorization token for a user after receiving a user connection to the App Router/FLP. An original user authorization token obtained for the user is exchanged with an application-specific authorization token. User interface elements displayed in the FLP are filtered based on scopes read from the exchanged application-specific authorization token.
US10298586B2

A method and/or system for using a file whitelist may include receiving a request to approve an application for release in an application store. The request may comprise application data. The application data may comprise a resource manifest and/or a file whitelist. The resource manifest may comprise, for example, one or more resource items. The file whitelist may comprise, for example, one or more file items. The request may be analyzed based on application data. A determination may be made whether the applications may be released in the application store based on the analyzing of the applications data. A request to access a particular file may be received. A determination of whether to grant the request may be based on a resource manifest and/or a file whitelist associated with the application.
US10298585B1

A system supports asset transfers among blockchains of differing distributed ledger technologies using interop circuitry. The interop circuitry may receive asset permissions from origin and target participant circuitry. The asset permissions may support transfer of an asset from an origin blockchain to a target blockchain. The interop circuitry, acting on behalf of the origin and target participant circuitry, locks an asset on the origin blockchain. Then the interop circuitry creates the asset on the target blockchain. The locking of the asset on the origin blockchain may prevent a double-expend opportunity, where the asset can be redeemed on the origin blockchain and on the target blockchain.
US10298582B2

Controlling access to sensitive data can be difficult during an application development effort. A developer may not be authorized to see the data that is to be used by the application. Credentials used in a development environment to access development data can require modification when the application is migrated to a deployed environment. Changing the code in the deployed environment increases risks of change induced incidents. The technology disclosed allows for the creation of a named credential object, where the credentials for different environments are stored, and where the named credential object is called by metadata. This allows the promotion of code from a development environment to a deployed environment without changes to code, and without giving access to sensitive data to the developer.
US10298581B2

In one embodiment, an authorized signing authority server receives an authenticity request from a security registrar to vouch for authenticity of a particular device. Based on receiving the authenticity request, the authorized signing authority server may then determine an authenticity state of the particular device, and may also request a device provisioning file for the particular device from a device provisioning server, the device provisioning file defining one or more network security policies for the particular device. Upon receiving the device provisioning file from the device provisioning server, the authorized signing authority server may then return the authenticity state and the device provisioning file for the particular device to the security registrar, causing the security registrar to complete authentication of the particular device based on the authenticity state and the device provisioning file.
US10298574B2

A method includes a client device forming a link-layer protocol packet having a field that includes first credentials of the client device and sending the link-layer protocol packet to a directly attached network device while the client device is in a first configuration. The method further includes a management system obtaining the first credentials from the network device and using the first credentials to access the client device and change the client device from the first configuration to a second configuration. Optionally, a computer system may include a plurality of client devices that implement the method to facilitate securely configuring the entire computer system. Preferably, each client device generates system-unique first credentials.
US10298573B2

A management system includes an authentication information management unit configured to manage authentication information used in authentication of a request to participate in a session among communication terminals; a content data management unit configured to manage content data transmitted among the communication terminals in the session; a request acceptance unit configured to accept a request for the content data managed by the content data management unit; an authentication unit configured to perform authentication using the authentication information managed by the authentication information management unit; and a transmission unit configured to transmit the content data managed by the content data management unit to a communication terminal that is a request source of the content data, when authentication of the request for the content data by the authentication unit using the authentication information is successful.
US10298569B2

Systems and methods for verifying human users through cognitive processes that computers cannot imitate are described herein. Human cognitive language processing techniques may be used to verify human users. Visual patterns and tests may be used to distinguish between humans and computers because computer-based visual recognition is fundamentally different from human visual processing. Persistent plugins and tests may be used to continuously verify human users.
US10298564B2

The invention relates to a method for a first communication device to perform authenticated distance measurement between the first communication device and a second communication device, wherein the first and the second communication device share a common secret and the common secret is used for performing the distance measurement between the first and the second communication device. The invention also relates to a method of determining whether data stored on a first communication device are to be accessed by a second communication device. Moreover, the invention relates to a communication device for performing authenticated distance measurement to a second communication device. The invention also relates to an apparatus for playing back multimedia content comprising a communication device.
US10298550B2

A computer program product for transmitting data flow in a network between two resources using a processing circuit to perform a method which includes obtaining a data record from a first resource, storing the data record and an associated data record identifier in a first memory, transmitting the data record from a first network to a second network, storing the data record and an associated data record identifier in a second memory, determining by an inline service provider whether the data record is suitable for transmission from a first resource to a second resource; based on determining that the data record is suitable for transmission by the inline service provider transmitting only the data record identifier stored in the second memory to the first switch and retrieving the data record stored in the first memory associated with the data record identifier for transmission to the second resource.
US10298541B2

In response to a request for sending second candidate information of a first communication terminal to a second communication terminal, a communication management system adds at least one of the member communication terminals indicated by the second candidate information of the first communication terminal, to first candidate information of the second communication terminal.
US10298528B2

A digital magazine server receives user comments on content items of a digital magazine and generates comment threads. A comment thread has one or more user comments associated with a content item and at least one topic. A topic thread on a selected topic includes one or more comment threads related to the selected topic. To select comment threads for a topic thread based on the selected topic, the digital magazine server determines the relevance of the topic of each comment thread to the topic of the topic thread and determines the quality of the comment thread based on a plurality of quality factors such as number of comments and timestamps of the comments in a comment thread. The digital magazine server aggregates the comment threads based on at least one of topic relevance determination and thread quality determination and selects comment threads based on the aggregation.
US10298520B2

A relay apparatus includes line cards, switch fabric cards, and a management card. The management card and the switch fabric cards are connected through a first communication network, and the switch fabric cards and the line cards are connected through a second communication network. The switch fabric card includes an error control unit. The error control unit stops switching of data transmission using a path of the second communication network by controlling the switch fabric card as an abnormal state based on an error signal that is output when a fault of the first communication network or an internal fault of the switch fabric card is detected as an error.
US10298514B2

Today's cloud software, especially cloud management software, faces a complex, distributed, cross platform environment with extremely diversified software components. Cloud Connection Pool (CCP) is a technique to obtain a connection in such an environment and is more complex than a traditional connection pool. CCP allows requesting components to establish connections to target components. CCP uses cloud mapping data that associates cloud components with each other and stores pool data that identifies connection pools for components (or “managing components”) that manage target components. In response to a request for a connection from a requesting component, the CCP determines a managing component that is associated with the requested target component and identifies (or creates) a connection pool that is associated with the managing component. The CCP then retrieves a connection from the connection pool and returns the connection to the requesting component.
US10298506B2

A data traffic scheduling method that includes selecting, using a network controller, plurality of flows that traverses a network node, generating an augmented graph based on a flow rate of the plurality of flows and link capacities of the network node, computing a flow schedule for the flow using the augmented graph to minimize delay or delay variance of the flows, and outputting the flow schedule. A data traffic scheduling method that includes obtaining, using a network controller, a network topology for a network, generating an augmented graph based on the network topology, converting the augmented graph to a mixed-integer linear program, scheduling a flow in the network using the mixed-integer linear program to minimize delay or delay variance of the flow, and outputting a flow schedule.
US10298502B2

A method, a device, and a system for performing balance adjustment on egress traffic of an SDN-based IDC network are disclosed, to resolve a technical problem that balance adjustment cannot be performed on egress traffic of an IDC network. The method includes: sending group information of at least one AS group to an SDN controller, where the group information is used by the SDN controller to generate an AS filtering policy and deliver the AS filtering policy to a DPE; obtaining AS traffic information that is obtained by the DPE through statistics collection according to the AS filtering policy; generating a traffic adjustment policy according to the AS traffic information, where the traffic adjustment policy is used to instruct to adjust traffic of a destination AS group to a destination egress link; and sending the traffic adjustment policy to the SDN controller.
US10298491B2

In response to a path monitoring task for a particular source/destination pair, a network controller determines whether stored information includes paths for the particular source/destination pair. When the stored information includes paths for the particular source/destination pair, a subset of source ports is selected that covers all the paths for the particular source/destination pair. A probe message is sent to cause an ingress switch to send probe packets using the subset of source ports. Paths for the particular source/destination pair are computed based on received probe packets. A determination is made whether a topology for the data center network has changed by comparing the paths computed based on the receive probe packets for the particular source/destination pair with the paths included in the stored information for the particular source/destination pair.
US10298489B2

“Multi-tenant awareness” is added to a set of one or more packet processing devices in a Software Defined Network (SDN) having a controller. For each of one or more tenants, information in a table associates network protocol address attributes with an Internet Protocol (IP) address unique to the tenant. The table is associated with a multiple-layer translation layer being managed by the SDN controller. As a data packet traverses the translation layer, network protocol address attributes are translated according to values in the table to enable logical routing of the packet (to a given PPD. This translation occurs dynamically (or “on-the-fly”) as packets are “on route” to their destination. By implementing a multi-layer network address translation (NAT), one layer may be used to translate network protocol address source attributes, while a second layer may be used to translate network protocol address destination attributes.
US10298483B2

An operator dashboard (user interface) used for testing disparate devices simultaneously and independently and further capable of asynchronous communication is disclosed.
US10298477B2

Described is a server monitoring technology that is scalable to large numbers of servers, e.g., in a datacenter. Agents on servers run queries to monitor data sources for that server, such as performance counters and other events. The agents monitor their resource usage and those of monitored events to stay within an administrator-specified resource budget (policy), e.g., by modifying the running queries and/or monitoring parameters. A controller receives results of the monitoring, analyzes the results, and takes action as needed with respect to server operation and monitoring. The controller may dynamically update an agent's queries, monitoring parameters and/or monitored data post-processing operations. The controller may issue alerts and reports, including alerts indicative of inter-server problems between two or more servers.
US10298475B2

A receiver and method for estimating an available bandwidth of a data channel streaming video data are provided. In one embodiment, the receiver includes: (1) a physical interface configured to receive the video data from a network, (2) a packet memory configured to store frames of the video data, (3) a dispersed packet time calculator configured to calculate a total time for one of the frames to go through the data channel, and (4) a bandwidth estimator configured to determine the available bandwidth of the data channel based on a number of data units received for the one frame and the total time.
US10298467B2

There is provided a method of configuring a given communication network. Network-access information associated with at least one network configuration of the given communication network is stored. The network-access information comprises information about network connections between devices of the given communication network that are allowed when the at least one network configuration is being implemented in the given communication network. The at least one network configuration comprises a current network configuration of the given communication network. A user interface is provided to enable a user to make a change in the current network configuration of the given communication network. The user input defining a target functionality to be achieved for at least one device of the given communication network is received in a generic, device-independent form, via the user interface. The user input is translated from the generic, device-independent form into a device-specific form to determine at least one change to be made in the current network configuration. The at least one change to be made in the current network configuration is analyzed, while taking into account the network-access information associated with the current network configuration, to determine an impact of the at least one change on the network connections between the devices of the given communication network. The user is provided with information indicative of the impact of the at least one change on the network connections between the devices of the given communication network, via the user interface. The at least one change is verified with the user, via the user interface, thereby enabling the user to accept or reject the at least one change to be made in the current network configuration.
US10298460B2

A server rack, includes a first system and a second system. The first system includes a host processing complex and a first wireless management system that manages a managed element of the first system out of band from a hosted processing environment instantiated on the first system and that provides a first wireless connection beacon. The second system includes a second wireless management system that receives the first wireless connection beacon and that provides a first indication to the first wireless management system that the second wireless management system received the first wireless connection beacon. The first wireless management system further determines a first location of the second system based upon the first indication.
US10298458B2

An example of a distributed system partition can include a method for client service in a distributed switch. The method can include maintaining local and global connection state information between a primary and a secondary controlling fiber channel (FC) over Ethernet (FCoE) Forwarders (FCFs) or FC forwarder in a distributed switch. A partition in the distributed switch can be detected and service to subtended clients of the distributed switch can continued using local state information.
US10298446B2

A device management method for use in a primary router, includes: establishing a management connection with a relay router; acquiring a management interface identifier from the relay router via the management connection, the management interface identifier being an identifier of an Application Programming Interface (API) in the relay router for providing a management function; and transmitting a management instruction to the relay router via the management connection, the management instruction carrying the management interface identifier and being configured to manage an electronic device connected to the relay router.
US10298444B2

Improved techniques are provided for processing streams of data. The duration of the time that an event is eligible for remaining in a time-based window can be variable for different events received via the same event stream. In certain embodiments, the duration of time that an input event spends in a time-based window is a function of one or more values of one or more attributes of the event. Since different events can have different one or more attribute values, the different events can spend different amounts of time in the time-based window for that event stream. The amount of time that an event spends in a time-based window can be controlled via the one or more attributes of the event.
US10298440B2

A transmission apparatus executes a reception processing that receives a first alarm detected in a first transmission apparatus different from the own apparatus from among a plurality of transmission apparatus from a second transmission apparatus different from the own apparatus from among the plurality of transmission apparatus, executes a detection processing that detects a second alarm of the own apparatus, executes a mask processing that masks alarms including the first alarm received by the reception processing and the second alarm detected by the detection processing, and executes a sending processing that sends an alarm that is not masked by the mask processing from among the alarms to a third transmission apparatus different from the own apparatus and the second transmission apparatus from among the plurality of transmission apparatus or sending the alarm to a given apparatus different from any of the plurality of transmission apparatus.
US10298431B2

A wireless transmit/receive unit (WTRU) may generate a first signal that utilizes a tail suppression signal generated from data and utilizes a first unique word. Elements of the data and the first signal may be mapped to one or more discrete Fourier transform spread (DFT-S) functions. An inverse DFT on symbols generated by the one or more DFT-S functions may be performed to generate a second signal for transmission.
US10298420B1

A high-speed serial data interface includes a transmitter and a receiver. The transmitter includes a feed-forward equalization (FFE) module. The FFE module has a main tap and at least one secondary tap. In a first mode, a sum of absolute values of a main tap compensation value and a secondary tap compensation value of each one of the at least one secondary tap is equal to one. In a second mode, the main tap compensation value has a unity gain equal to one, and each secondary tap compensation value is greater than or equal to the secondary tap compensation value in the first mode divided by the main tap compensation value in the first mode.
US10298418B2

A system and method for disintegrated channel estimation in wireless networks. The system provides a disintegrated channel estimation technique required to accomplish the spatial diversity supported by cooperative relays. The system includes a filter-and-forward (FF) relaying method with superimposed training sequences for separately estimating the backhaul and the access channels. To reduce inter-relay interference, a generalized filtering technique is provided which multiplexes the superimposed training sequences from different relays to the destination by time-division multiplexing (TDM), frequency-division multiplexing (FDM) and code-division multiplexing (CDM) methods.
US10298416B2

The present invention discloses a method and system for processing a first layer two packet converting a first layer two packet to a first unicast layer two packet at a wireless access point. The wireless access point receives first one or more layer three packets and extracts a first layer two packet from the first one or more layer three packets. If the first layer 2 packet is a multicast packet and it satisfies the predefined rule, the first layer two packet is converted to a layer two unicast packet with a first destination address and send to a Local Area Network (LAN) network interface. If the first layer two packet does not satisfy the predefined rule, it is broadcast to one or more LAN network interface. When the first layer two packet is not a multicast packet, it is sent to its corresponding destination address through one or more LAN network.
US10298409B2

It is provided an apparatus, comprising condition determining means adapted to determine a currently valid condition; selecting means adapted to select a rule-condition pair for a policy controlled object of a user based on the currently valid condition and a received message comprising a first rule-condition pair and a second rule-condition pair for the user, and wherein each of the first and second rule-condition pairs comprises a respective policy rule and a corresponding condition when the respective policy rule is to be applied; rule setting means adapted to set the policy rule comprised in the selected rule-condition pair for the policy controlled object of the user; rule applying means adapted to apply the set policy rule to the policy controlled object of the user.
US10298403B2

Authentication systems and methods for a population of devices each associated with an RFID tag are described. For each device, a secret key is combined cryptographically with a publicly-readable unique identifier (UID) of an RFID tag to obtain a unique authorization signature. The RFID tag is prepared utilizing the unique authorization signature as memory-access and/or tag-operation password(s). The systems and methods may safeguard against attacks whereby compromise of a single tag will not compromise the entire population of devices and may reduce or eliminate the use of inappropriate surgical devices during a surgical procedure.
US10298402B2

Implementations disclose an access control mechanism for peer-to-peer sharing technology. A method includes receiving, by a processing device of a first user device, an encrypted media item and a wrapped encryption key from a second user device via a peer-to-peer connection; transmitting, by the first user device, the wrapped encryption key and a request to a media server to determine whether the first user device is authorized to play the encrypted media item; receiving, from the media server, a response indicating the first user device is authorized to play the encrypted media item, the response comprising an encryption key derived from the wrapped encryption key; and decrypting the encrypted media item using the encryption key to play the media item.
US10298398B2

Implementations relate to peer-to-peer discovery, connection, and data transfer providing privacy protection and increased security features.
US10298391B2

A system for generating symmetric cryptographic keys for communications between hosts. Hosts use associated devices to generate secret keys. Each key is generated based on a static seed and a dynamic seed. The dynamic seed is created from sensor data or auxiliary data. The secret key allows host machines to encrypt, or decrypt, plaintext messages sent to, or received from, other host machines.
US10298383B2

Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases.
US10298381B1

Data communication apparatus and methods for a multi-wire interface are disclosed. A half rate clock and data recovery (CDR) circuit derives a clock signal including pulses corresponding to symbols transmitted on a 3-wire interface, where the symbols are transmitted at a particular frequency with each of the symbols occurring over a unit interval (UI) time period. The first clock signal is input to a flip-flop logic included in a delay loop, and serves to trigger the first flip-flop logic. A second clock signal is generated using a programmable generator in the delay loop and has a frequency of a half UI and is fed back to a data input of the flip-flop. The output of the flip-flop is used as a recovered clock signal for the CDR at a half rate frequency. This design provides ease of timing control, a delay line without extra nonlinear-effects, and less hardware overhead.
US10298376B2

A method of generating a reference signal includes acquiring a base sequence and acquiring a reference signal sequence with a length N from the base sequence. Good PAPR/CM characteristics of the reference signal can be kept to enhance performance of data demodulation or uplink scheduling.
US10298373B2

A radio base station, user equipment (UE), and method of control signaling in wireless communication systems. Control information is transferred from a base station to at least one UE, via a plurality of common pilot channels. A set of unique pilot sequences is predefined, and the base station assigns specific pilot sequences from the set of pilot sequences to specific common pilot channels, forming a pilot sequence assignment pattern representing specific control information. The UE, having knowledge of the relations between pilot sequence assignment patterns and control information, interprets the received pilot sequence assignment pattern as specific control information. The method is particularly well suited for broadcast type control information.
US10298370B1

Systems and techniques relating to wireless networking systems and techniques, namely employing acknowledgement mechanisms utilized with trigger frames, include: transmitting, by a first wireless device, a first frame, wherein the first frame comprises a field indicating a response frame type associated with reception of the first frame; receiving, by the first wireless device from a second wireless device, an acknowledgement (ACK) frame associated with the field in the first frame via an established wireless communication channel, the ACK frame having a frame type corresponding to the response frame type indicated in the first frame; and receiving, by the first wireless device from the second wireless device, additional frames associated with the ACK frame.
US10298367B2

Methods and apparatuses are provided for transmitting a signal using a sequence in a wireless communication system. A first sequence used to transmit a first signal in a first channel is determined by performing group-hopping using a pseudo-random pattern over a first group of sequences. A second sequence used to transmit a second signal in a second channel is determined by performing the group-hopping using the pseudo-random pattern over a second group of sequences.
US10298361B2

A method for sending forward error correction (FEC) configuration information by a sending apparatus in a multimedia system is provided. The method includes sending source FEC configuration information for an FEC source packet to a receiving apparatus, wherein the source FEC configuration information includes information related to an FEC source or repair packet that is sent first among at least one FEC source or repair packet if an FEC source or repair packet block includes the at least one FEC source or repair packet.
US10298357B2

The present disclosure discloses a photonic chip. The photonic chip receives a first optical signal and a second optical signal with different wavelengths from two optical sources, respectively. The photonic chip includes a polarization multiplexing element (PME). The PME receives the first and the second optical signals from the first and the second optical sources respectively and combines the first and the second optical signals into a single optical path. The PME polarizes the first optical signal to have a different polarization than the second optical signal and transmits the combined first and the second optical signals in a common waveguide.
US10298356B1

Partial optimization systems and methods of wavelengths or spectrum in an optical network include, based on current services in the optical network each having a route and wavelength assignment and based on a ratio of services that can be changed in the partial optimization, preforming a first stage optimization to determine which of the current services are changed for one or more of the route and the wavelength assignment to attain a reduction of a number of wavelengths; performing a second stage optimization to determine an order of implementing changes from the first stage optimization that with the order minimizing one or more of conflicts and step counts; and causing implementation of the changes in the optical network.
US10298353B2

In an aspect of the present invention, provided is a method for receiving an uplink signal by a base station (BS) in a wireless communication system where a reference signal is not used, including: obtaining information bits by demodulating and decoding a signal of a first user equipment (UE) that is modulated through a differential modulation scheme; estimating a channel between the first UE and the BS using the information bits; and performing successive interference cancellation (SIC) using the signal of the first UE restored through the channel estimation results and the information bits. In this case, the BS may estimate the channel between the first UE and the BS by assuming that an Nth modulation symbol among modulation symbols of the information bits modulated through the differential modulation scheme is fixed to a predetermined constellation point.
US10298352B2

Aspects of the disclosure relate to a new radio (NR) single symbol design in which reference signals and data tones are frequency division multiplexed (FDM). In a particular aspect of the disclosure, a different encoding sequence is assigned to each possible value of an information element (IE) such that a minimum distance between encoding sequences corresponding to any pair of possible values is maximized. A symbol corresponding to a particular value of the IE is then transmitted. Here, the symbol is configured according to a sequence selected from a set of sequences corresponding to the particular value of the IE, such that the symbol comprises a plurality of reference signals FDM with a plurality of FDM resource elements.
US10298350B2

An apparatus or method for transmitting data blocks on a communications channel having a radio link between two stations including a user equipment comprises receiving first data blocks from the user equipment, and transmitting second data blocks to the user equipment. A polling interval is dynamically set for the transmission of polling messages to the user equipment after transmission of the second data blocks, the polling interval being set in accordance with at least one of: a size of one or more data blocks received by the apparatus from the user equipment, a size of one or more blocks transmitted from the apparatus to the user equipment, and a service to which the user equipment is subscribed. The apparatus may be used as a PCU in a cellular mobile telephone system.
US10298345B2

Aspects of the present disclosure includes a method and program product for clock synchronization of a networked computer system. The method records a time (t1) when a first codeword marker in a datastream is sent from a master computer to a slave computer and records a second time (t2) when the slave computer receives the first codeword marker. The method includes recording a third time (t3) when a third codeword marker in a datastream is sent from the slave computer to the master computer. The method includes recording a fourth time t4 when the master receives the third codeword marker from the slave. The method calculates a time offset θ, according to; θ = ( t ⁢ ⁢ 2 - t ⁢ ⁢ 1 ) + ( t ⁢ ⁢ 4 - t ⁢ ⁢ 3 ) 2 , and a roundtrip delay δ, according to δ=(t4−t1)−(t3−t2). The clock in the slave computer is synchronized with a clock in the master computer using θ and δ.
US10298341B2

A transmitting device and a receiving device. The receiving device includes: a signal to noise ratio measuring device, configured to measure a signal to noise ratio of a pilot frequency aggregation bit stream after demodulation and before coding; a pilot frequency parameter adjusting device configured to adaptively adjust a width of the pilot frequency aggregation and/or interval of pilot frequency clusters according to the signal to noise ratio measured by the signal to noise ratio measuring device; and a frequency parameter reporting device configured to report the width of pilot frequency aggregation and/or the pilot frequency cluster interval adjusted by the pilot frequency parameter adjusting device to the transmitting device.
US10298340B2

A method for improving accuracy of power measurements of low power radio frequency (RF) signals received by a RF signal receiver in which power measurement accuracy taken at a low resolution is compensated with use of multiple RF signal attenuations at a finer resolution. In accordance with exemplary embodiments, incremental RF signal attenuations are applied to the received RF signal. An average of the power measurements, including those with the applied signal attenuations, has a net measurement error less than that of a direct power measurement.
US10298337B2

A processing module for a receiver device. The processor module comprises a channel estimate generation component arranged to output channel estimate information for a received signal, and a timestamping module arranged to determine a ToA measurement for a marker within a packet of the received signal based at least partly on the channel estimate information for the received signal generated by the channel estimate generation component. The channel estimate generation component comprises a validation component arranged to derive a validation pattern for the packet within the received signal for which a ToA measurement is to be determined, identify a section of the packet containing a validation sequence, and perform cross-correlation between at least a part of the validation sequence within the packet and at least a part of the validation pattern to generate channel estimate validation information.
US10298331B2

An optical transmission system is configured to optically transmit data from an optical transmitter to an optical receiver using a plurality of subcarriers. The optical transmitter includes a control unit configured to transmit a measurement signal using a subcarrier included in a band used for optical transmission when a signal is communicated to the optical receiver, the control unit being configured to calculate transmission characteristics obtained between the optical transmitter and the optical receiver based on the measurement signal returned from the optical receiver, and the control unit being configured to allocate, based on the transmission characteristics, a communication link to a subcarrier excellent in the transmission characteristics and least affecting transmission capacity. The optical receiver is configured to return the measurement signal received thereby to the optical transmitter.
US10298326B2

A Wiener filter for equalizing an effect of a first filter on an input signal which is subject to the first filter and to noise and/or interference, wherein: the first filter is dependent on at least one unknown quantity; and the Wiener filter is configured based on an averaged representation of the first filter averaged over the at least one unknown quantity, in place of a representation of the first filter being assumed to be known.
US10298324B2

The invention relates to a free space optical communications device (10) multiplexed in wavelengths of between 400 nm and 1600 nm, said device including demultiplexing means (11) that are designed so as to separately dissociate a number n1 of wavelengths from one another, the demultiplexing means (11) including one or more detectors (110) having a number n2 of optical filters (111) and active elements (112) which correspond to the number n1 of wavelengths, each active element (112) being arranged to selectively detect one wavelength from among said wavelengths (Id . . . Àn) via an optical filter (111) separate from the active element (112) which is included in a housing (113), the optical filter (111) being in contact with a protection means (114), inserted between the optical filter (111) and the active element (112), said protection means (114) closing said housing (113).
US10298323B2

The disclosure is directed to a method and system for generating a pilot tone for an optical signal with an optical telecommunications system. The pilot tone is generated in the digital domain by modulating the data to be transmitted to a destination node within the optical telecommunications network. The modulation of the data introduces occurrence modulation to the optical signal.
US10298316B2

An example system for satellite payload communications includes a digital channelizer and a regenerative communications subsystem (RCS). The digital channelizer includes a plurality of inputs for receiving a plurality of signals from a plurality of uplink beams and a plurality of outputs for outputting the plurality of signals. The RCS includes a plurality of inputs selectably coupled to the digital channelizer outputs to receive signals from selected ones of the digital channelizer outputs and a plurality of outputs selectably coupled to the digital channelizer inputs to transmit the processed signals to selected ones of the digital channelizer inputs. The RCS is configured to process selected ones of the plurality of signals to produce processed signals.
US10298310B2

It would be to provide a method which will work with future versions of LTE-A, be backwards compatible and alleviate interference to signals for basic system operation.The method includes generating one or more Reference Signals associated with the one or more Channel Quality Indicators, and includes mapping the one or more Channel Quality Indicator-Reference Signals to the last symbol of the second slot of the one or more subframes.
US10298300B2

A method of a user equipment (UE) for a channel state information (CSI) feedback in an advanced communication system. The method comprises receiving, from a base station (BS), CSI feedback configuration information for a pre-coding matrix indicator (PMI) feedback based on a linear combination (LC) codebook, wherein the PMI comprises a first PMI (i1) and a second PMI (i2), determining the first PMI (i1) and the second PMI (i2) indicating an LC pre-coder that corresponds to a weighted linear combination of a first beam and a second beam, wherein the first PMI (i1) includes a first beam indicator (i1,1, i1,2) and a second beam indicator (i1,3) that indicate the first beam and a distance (d1, d2) of the second beam in accordance with the first beam, respectively; and the second PMI (i2) indicates weights assigned to the first beam and the second beam. The method further comprises transmitting, to the BS, the CSI feedback over an uplink channel including the determined first PMI (i1) and the second PMI (i2).
US10298296B2

A technique for improving wireless communication characteristics involving matching transmitter antenna patterns to receiver antenna patterns. In a specific implementation, the transmitter antenna pattern adapts to changing parameters, such as when a smartphone is initially held in a first orientation and is later held in a second orientation. Because the transmitter antenna pattern matches receiver antenna patterns, signal quality between stations improves. In some implementations, antennas are organized and mounted to maximize spatial diversity to cause peak gains in different directions.
US10298285B2

A semiconductor device includes a plurality of chips, at least one line, and a controller. Each of the chips includes a chip input/output (I/O) pad, a transceiver configured to perform a transmission operation in response to a transmission enable signal or perform a reception operation in response to a reception enable signal, and a switch configured to couple the chip input/output (I/O) pad to the transceiver in response to a switch enable signal. The at least one line is configured to couple the chip input/output (I/O) pads contained in the plurality of chips. The controller generates the transmission enable signal, the reception enable signal, and the switch enable signal in response to a command signal and a chip identifier (ID) signal.
US10298271B2

An apparatus (100) for providing an joint error correction code (140) for a combined data frame (254) comprising first data (112) of a first data channel and second data (122) of a second data channel comprises a first error code generator (110) configured to provide, based on a linear code, information on a first error correction code (114a, 114b) using the first data (112). The apparatus further comprises a second error code generator (120) configured to provide, based on the linear code, information on a second error correction code (124) using the second data (122). The apparatus is configured to provide the joint error correction code (140) using the information on the first error correction code (114a, 114b) and the information on the second error correction code (124).
US10298270B2

A method and an apparatus for transmitting broadcast signals thereof are disclosed. The method for transmitting broadcast signals includes encoding DP data according to a code rate, wherein the encoding further includes LDPC encoding the DP data according to the code rate, bit interleaving the LDPC encoded DP data, mapping the bit interleaved DP data onto constellations, MIMO (Multi Input Multi Output) encoding the mapped DP data, and time interleaving the MIMO encoded DP data; building at least one signal frame by arranging the encoded DP data; and modulating data in the built signal frame by OFDM method and transmitting the broadcast signals having the modulated data, wherein the step of modulating includes inserting CPs in the built signal frame based on a CP set which includes information about locations of CPs, wherein the CP set is defined based on FFT size.
US10298269B2

A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 64800 and a code rate of 3/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 4096-symbol mapping.
US10298263B2

A data processing system includes a likelihood input operable to receive encoded data, a decoder operable to apply a decoding algorithm to likelihood values for the received encoded data and to yield a decoded output, and a decoder input initialization circuit operable to generate new decoder input values based in part on the likelihood values for the received encoded data after the likelihood values for the received encoded data have failed to converge in the decoder.
US10298262B2

For decoding messages, a decoder exchanges single-bit messages for a data channel between a plurality of M parity nodes and a plurality of N symbol nodes. Each parity node has one or more adjacent symbol nodes with a plurality of edges between the parity node and each adjacent symbol node. An extrinsic decision and an extrinsic parity value are calculated based on a time-varying lookup table. The lookup table stores the locally maximum-likelihood extrinsic decision for a quantized number of data channel states as a function of adjacent extrinsic parity values.
US10298261B2

Decoding logic is provided that is operational upon a data buffer to represent a plurality of variable nodes and a plurality of check nodes. For a respective one of the variable nodes, a vector component is selected from a confidence vector associated with the variable node. Using a respective one of the check nodes, a check node return value is calculated based on one or more other vector components from one or more other vectors and one or more vector indices corresponding to the one or more other vector components. The confidence vector is then updated based on the check node return value and an index for the check node return value, and a current state of a memory cell associated with the respective one of the variable nodes is determined based on a location of a primary one of multiple vector components within the updated confidence vector.
US10298255B2

Ablation probe tips (108, 148, 320, 360) and physical and virtual stents (110) for use in tooth bud ablation procedures that result in tooth agenesis as well as tooth bud ablation methods are described herein.
US10298247B1

This application relates to analog-to-digital converter (ADC) circuitry (200). A time-encoding modulator (TEM 201) has a comparator (104) and a loop filter (105) configured to generate a pulse-width-modulated (PWM) signal (SPWM) in response to an input signal (SIN) and a feedback signal (SFB). A controlled oscillator, such as a VCO (202) receives the PWM signal and generates an output oscillation signal (SOSC) with a frequency that varies based on a drive signal at a drive node (109), e.g. a drive node of a ring oscillator (107). The controlled oscillator (202) comprises at least one control switch (112) controlled by a switch control signal (S1) generated from the received PWM signal so as to control the drive strength of the drive signal applied to the drive node (109). The feedback signal (SFB) for the TEM (201) is derived from the controlled oscillator (202) so as to include any timing error between the PWM signal and the switch control signal (S1) applied to said control switch.
US10298244B2

A frequency synthesizer generates a wide range of frequencies from a single oscillator while achieving good noise performance. A cascaded phase-locked loop (PLL) circuit includes a first PLL circuit with an LC voltage controlled oscillator (VCO) and a second PLL circuit with a ring VCO. A feedforward path from the first PLL circuit to the second PLL circuit provides means and signal path for cancellation of phase noise, thereby reducing or eliminating spur and quantization effects. The frequency synthesizer can directly generate in-phase and quadrature phase output signals. A split-tuned ring-based VCO is controlled via a phase error detection loop to reduce or eliminate phase error between the quadrature signals.
US10298243B2

A system for determining a correction for an output value of a time-to-digital converter within a phase-locked loop is provided. The output value relates to a time difference between an input signal and a reference signal supplied to the time-to-digital converter. The system includes a digitally-controlled oscillator configured to generate a first signal independently from the output signal. The first signal has a first frequency different from an integer multiple of a reference frequency of the reference signal. The system further includes a frequency divider configured to generate the input signal for the time-to-digital converter based on the first signal. The input signal has a second frequency being a fraction of the first frequency. Further, the system includes a processing unit configured to calculate the correction using a distribution of output values of multiple time differences.
US10298242B2

A phase control oscillator includes a voltage control oscillator, a phase comparator, a loop filter, and a storage unit. The loop filter is configured such that if the phase control oscillator starts operating, the loop filter outputs a control voltage based on phase difference information to the voltage control oscillator. The storage unit stores deviation information indicative of a deviation between a phase difference when the loop filter outputs the control voltage in the case where the phase control oscillator starts operating and the phase difference indicated by the phase difference information. After the loop filter outputs the control voltage in response to the phase control oscillator starting operating, the loop filter outputs the control voltage based on the phase difference information output from the phase comparator and the deviation information stored in the storage unit, to the voltage control oscillator.
US10298239B2

A temperature-compensated oscillator includes a resonator element, an oscillating circuit, and a temperature compensation circuit, and a frequency deviation with respect to a frequency at a time point when power supply starts is within a range of ±8 ppb at a time point when 10 seconds elapse from when the power supply starts, within a range of ±10 ppb at a time point when 20 seconds elapse from when the power supply starts, and within a range of ±10 ppb at a time point when 30 seconds elapse from when the power supply starts.
US10298238B2

A driver includes first and second resistors coupled to a supply voltage and coupled to pairs of main transistors at positive and negative output nodes. The first and second pairs of main transistors provide emphasis and de-emphasis on the positive and negative output nodes. The driver also includes a delay inverter, a pull up booster and a pull down booster. The delay inverter delays and inverts each of a pair of differential input signals to provide delayed and inverted differential signals. The pull up booster provides a bypass current path that bypasses the first and second resistors but includes at least some of the first and second pairs of main transistors. The pull down booster provides an additional current path from the supply voltage through the first or second resistor to ground.
US10298236B2

An on-chip aging sensor and associated methods for detecting counterfeit integrated circuits are shown. In one example, the on-chip aging sensor is integrated within a chip. In one example, the on-chip sensor includes both an on-chip age sensor, and an antifuse memory block including static information unique to the chip.
US10298235B2

Embodiments include an integrated clock gating (ICG) cell. The low power ICG cell may include an input condition determination circuit configured to generate a temporary inverted clock signal and an inverted output signal. The low power ICG cell may include an enable control logic circuit configured to receive the temporary inverted clock signal and the inverted output signal from the input condition determination circuit. The low power ICG cell may include a latch circuit coupled to the enable control logic circuit and configured to latch an input value dependent on at least the inverted output signal and the temporary inverted clock signal. The input condition determination circuit is configured to generate the temporary inverted clock signal only when it is needed.
US10298234B2

The invention is a field device with an input unit comprising a first number of switch elements in order to generate first input signals and a second number of magnetically actuatable sensor elements assigned to the switch elements in order to generate second input signals which are OR-linked to the first input signals. Each switch element is assigned to at least two sensor elements, which are arranged and connected such that the respective second input signal is output only when at least two specified sensor elements assigned to a switch element are activated.
US10298233B2

A switching control arrangement, in particular for a motor vehicle, having a movable actuating surface that interacts with a displacement element in such a way that the actuating surface can be moved substantially linearly, over at least one distance, out of an initial position and into an actuating position. The displacement element has at least one elastic element arranged so as to be clamped in place. The actuating position can be designed as a switching position, such that the actuating surface, when in the switching position, has a switching effect on a switching element, a sensor, or the like. The elastic element is designed as a planar element with a small thickness in the form of a membrane, such that it is possible for the elastic element to be elastically deflected substantially perpendicularly to the surface of the membrane.
US10298232B2

The present invention relates to a touch switch of (10) for a control device of an electric and/or electronic apparatus. The touch switch (10) comprises a non conductive layer (14) made of an electrically non-conductive material or material composition, a touch sensor (12) arranged at a bottom side or rear side of the non conductive layer (14), a metallic layer (16) arranged at a top side or front side, respectively, of the non conductive layer (14), and a cut-out (18) formed in the metallic layer (16) and arranged at the non conductive layer (14) opposite to the touch sensor (12). The metallic layer (16) is connected to a ground connection (22). Further, the present invention relates to a control device for an electric and/or electronic apparatus. Moreover, the present invention relates to an electric and/or electronic apparatus, in particular a domestic appliance.
US10298229B2

A switch adapter can include a base having one or more openings, a support coupled to the base, and one or more retainers for coupling a switch to the adapter. The support can have one or more openings between its interior and exterior. The retainer can be adapted to couple to at least one of the base, the support, and a combination thereof. The switch adapter can include one or more switches, such as a replacement switch, and can be adapted for replacing a limit switch with a proximity switch. A proximity switch can be coupled to a switch adapter in one or more positions, and a switch adapter can be adapted to couple with a plurality of different switch mounts. A switch adapter can include a mass compensator for adjusting its center of gravity.
US10298228B2

A multiplexer circuit, of power supply (PS) voltages, includes: selectable finger circuits corresponding to the PS voltages, each selectable finger circuit: having an input node which is finger-circuit-specific and an output node which is common to the finger circuits; being configured to receive a corresponding one of the PS voltages from the input node and, if selected, provide a first version of the corresponding PS voltage to the output node. Each of the selectable finger circuits includes: a non-enhancement mode transistor of a first conductivity (C1) type (C1-type transistor) and enhancement mode first and second transistors of a second conductivity (C2) type (C2-type transistor) connected in series between the input node and the output node.
US10298226B2

A signal transmission device relating to a technique disclosed in the specification of the present application includes: an isolation transformer; an input-side circuit connected to an input side of the isolation transformer; and an output-side circuit connected to an output side of the isolation transformer. The output-side circuit includes a first differential circuit having a first input and a second input connected to the first terminal and the second terminal respectively. A reference potential of the first differential circuit is connected to the second terminal.
US10298225B1

The present disclosure is directed to an electrical system topology designed for use in a portable electronic device. The electrical system uses a conductive housing of the device to form a single main electrical circuit, which consists of forward microelectronics, rearward microelectronics and a battery. Through synchronized main circuit current modulation by the forward and rearward microelectronics, bidirectional communication is established between the forward and rearward sections of the device. The design allows for mechanical simplicity, which aids in product size reduction, increases mechanical robustness, reduces costs and enhances mechanical design flexibility.
US10298218B2

The invention relates to a method and a device for controlling an electrical or electronic switching element that can be activated by an electrical signal, wherein a PWM signal can be produced by a PWM module for controlling the switching element and which can be modulated as a function of the supply voltage and/or of an ambient temperature on the electromechanical or electronic switch.
US10298212B2

A hybrid energy storage system is configured to control pulsed power. A first dynamo-electric machine is coupled to an inertial energy storage device and has multiple input stator windings configured to accept input power from a source. A polyphase output stator winding is configured to deliver electric power having a first response time to a DC bus. A secondary energy storage system is coupled to the DC bus and is configured to convert its stored energy to electric power in a bidirectional manner. A second dynamo-electric machine has an input stator winding and at least one polyphase output stator winding coupled to a converter, the converter coupled to a DC output. A polyphase boost exciter is configured to derive energy from the DC bus and excite the second machine input stator winding, wherein the second machine is configured to be excited at a faster rate than the first response time of the first machine.
US10298208B1

A dynamic impedance system deployable on a current transformer having a core and at least one winding element is provided. The dynamic impedance system includes a voltage reference module and a dynamic impedance module operably connected to one another. The voltage reference module defines a voltage threshold for regulating an output voltage of the current transformer. The dynamic impedance module regulates the output voltage based on the voltage threshold defined by the voltage reference module to maintain flux induced in the current transformer, thereby avoiding core saturation of the current transformer and enhancing accuracy of measurements.
US10298206B2

In order to pass a signal having a wide pass bandwidth with respect to a center frequency of a pass band, a surface acoustic wave device includes a first surface acoustic wave element provided with a first pass band; and a second surface acoustic wave element having a second pass band in a high frequency band compared with the first pass band of the first surface acoustic wave element, in which the first surface acoustic wave element and the second surface acoustic wave element have a common input terminal and a common output terminal, and a frequency of a high frequency side of the first pass band of the first surface acoustic wave element is partially overlapped with a frequency of a low frequency side of the second pass band of the second surface acoustic wave element.
US10298202B2

The invention relates to a BAW resonator with reduced heat build-up. The heat build-up is reduced by a thermal bridge, which dissipates heat from the electro-acoustically active region to a support substrate, without impairing the acoustics of the resonator.
US10298201B2

A bulk acoustic wave resonator may include: an air cavity; an etching stop layer and an etching stop part, which define a lower boundary surface and a side boundary surface of the air cavity; and a resonating part formed on an approximately planar surface, which is formed by a upper boundary surface of the air cavity and a top surface of the etching stop part. A width of a top surface of the etching stop part may be greater than a width of a bottom surface of the etching stop part. A side surface of the etching stop part connecting the top surface of the etching stop part to the bottom surface of the etching stop part may be inclined.
US10298194B2

A technique relates to a superconducting microwave device. A left-handed resonator include at least one unit cell. A non-linear dispersive medium is connected to the left-handed resonator, such that one end of the left-handed resonator is connected to the non-linear dispersive medium and an opposite end of the left-handed resonator is connected to a port. The left-handed resonator and the non-linear dispersive medium are configured to output a quantum signal in a squeezed state.
US10298190B2

A method for phased array tapering includes setting a gain at a phase-invariant variable gain amplifier in each of a plurality of front-ends of a phased array transceiver to perform tapering of beam pattern side lobes. A resistance in the phase-invariant variable gain amplifier is set to provide a phase shift that is independent of gain.
US10298182B1

A radio frequency amplifier comprises a transistor, a transformer and a variable capacitor. The transistor has an input terminal, an output terminal and a control terminal. The transformer has a first coil conductor and a second coil conductor. The first coil conductor magnetically couples to the second coil conductor. The second coil conductor connects to the control terminal. The first coil conductor connects to the input terminal. The variable capacitor connects in parallel with the second coil conductor. An integrated circuit using the radio frequency amplifier is also introduced.
US10298181B2

Strength of a signal received by a low-noise amplifier is controlled depending on strength of a reception signal emitted to a communication satellite by a mobile terminal. A low-noise amplification device provided in the communication satellite comprises: a variable-power attenuation unit which generates an attenuation signal by attenuating the reception signal received in the communication satellite; a low-noise amplification unit which generates an amplification signal by amplifying the attenuation signal with low noise; and a signal control unit which outputs a control signal to the variable-power attenuation unit depending on the attenuation signal, and then adjusts an attenuation of the variable-power attenuation unit.
US10298180B2

This application provides a control circuit, a control method, and an electronic device the control circuit comprising: a first control sub-circuit configured to receive a first power supply signal from a first power supply sub-circuit in an electronic device that includes the control circuit and output a first control signal; a second control sub-circuit configured to receive a second power supply signal from a second power supply sub-circuit in the electronic device and output a second control signal under control of the first control signal, wherein the second control signal is used to control a functional sub-circuit in the electronic device to be disabled during power-on and power-off process of the electronic device.
US10298179B2

An amplifier arrangement has an input transistor being connected between reference potential terminals by a current source and a current sink. An amplifier stage has an amplifier output coupled to a first connection node between the current sink and a first terminal of the input transistor by means of a feedback path, and an amplifier input connected to a second connection node between the current source and the second terminal of the input transistor. A level-shifting structure has a level-shifting element with one end connected to a reference connection, wherein the level-shifting element is adapted to perform a level-shifting of a potential at the second connection node with respect to a potential at the reference connection. The reference connection is coupled to one of the following: the amplifier output, the first connection node, a control terminal of the input transistor.
US10298175B2

A circuit device includes an oscillation signal generation circuit that generates an oscillation signal having an oscillation frequency using a resonator, the oscillation frequency being a frequency set by using frequency control data, and a processor configured to perform a signal process on input frequency control data based on a phase comparison result between an input signal based on the oscillation signal and a reference signal. The processor is configured to estimate a true value for an observed value of the frequency control data based on the phase comparison result through a Kalman filter process in a period before a hold-over state is detected, and generate aging-corrected frequency control data, in a case where the hold-over state is detected, by holding the true value at a timing corresponding to a timing of detecting the hold-over state, and by performing a calculation based on the true value.
US10298169B2

Bonding clip used to electrically bond metal rails forming frameworks are provided. The bonding clip includes an electrically conductive back pad having a plurality of arms extending from the back pad. Each arm has one or more penetrating projections extending into a receiving zone between the arms. The arms have a lead-in at a free end. The lead-in has one or more penetrating projections extending away from the receiving zone.
US10298163B2

A haptic system with a haptic actuator and a voltage sensor coupled to the haptic actuator, to sense a voltage across the haptic actuator. The voltage across the haptic actuator has a back electromotive force component. There is a current regulator coupled to the haptic actuator and to the voltage sensor. The current regulator is adapted to provide a current signal to drive the haptic actuator and to adjust the current signal based on the back electromotive force component. For example, the voltage across the haptic actuator may be a direct voltage or a representation of the voltage such as a filtered value of the voltage.
US10298162B2

Disclosed is a brushless-motor drive apparatus provided with: a current detecting means (6) for detecting currents flowing through armature windings (9) during periods when switching elements (5H, 5L) of a drive circuit are ON; a calculation processing means for comparing a target current value and the detected current value, and calculating voltage command values to be applied to the armature windings (9); and a PWM driving means (4) for controlling the ON/OFF of the switching elements on the basis of the voltage command values. The calculation processing means is further provided with a current-detection possibility evaluating means for evaluating whether or not the currents flowing through the armature windings (9) can be detected, with the operating states of the switching elements of each of the phases, and when the current-detection possibility evaluating means evaluates that the currents cannot be detected, the calculation processing means obtains the voltage command values using the current values detected when the currents are able to be detected, and continues the motor drive.
US10298161B2

Systems and methods for controlling a generator set are disclosed herein. The method includes determining a state of local modes selectable via a local interface proximate to the generator set. The local modes include a local standby mode and a local remote enabled mode. The method also includes determining a state of a plurality of remote modes using a command from a device remote from the location of the generator set in response to determining the remote enabled mode is active. The method includes, in response to determining the local standby mode is active, the remote enabled mode is active, and one of the remote modes is active, determining whether to activate or stop the generator set based on the active remote mode and disabling the local standby mode from controlling activation of the generator set.
US10298159B2

A method includes selectively communicating each of a plurality of motor winding signals to a first node at an integrated circuit based on whether the corresponding motor winding is energized. A zero-crossing event at an unenergized motor winding signal is determined based the unenergized motor winding signal and based on a signal at the first node.
US10298154B2

Unique systems, methods, techniques and apparatuses of a synchronous reluctance machine (SynRM) control are disclosed. One exemplary embodiment is a control device structured to operate a converter coupled to a synchronous reluctance machine and receive measurements of current. The device comprises a converter controller structured to detect a power supply restoration, operate the converter so as to transmit a series voltage vectors relative to the stationary reference frame to the stator of the synchronous reluctance machine, receive current measurements following the transmission of each of the voltage vectors, estimate the rotor position using the characteristics of the voltage vector and the received current measurements corresponding to at least one voltage vector, estimate the rotor speed using the characteristics of the voltage vectors and the received current measurements corresponding to at least two voltage vectors, and operate the converter so as to apply voltage to the stator.
US10298146B2

A method of controlling the stability of a power converter in a closed-loop control system. The method includes inputting a variable to be controlled such as an output voltage of the power converter to a compensator or mathematical function for processing; determining, using the compensator, an error signal representative of a difference between the output voltage and a reference voltage; evaluating an energy content in a short-time Fourier transform spectrogram of the error signal from the compensator and/or evaluating the sinusoidality shape of the error signal; updating a transfer function of the compensator and other system parameters in accordance with the energy content or sinusoidality.
US10298137B2

A method for frequency reduction of a quasi-resonant (QR) converter includes detecting a valley point of a resonant waveform of the QR converter, by detecting a voltage level of the resonant waveform falling below a first threshold voltage. A blanking time is formed from the beginning of a QR conversion cycle to the valley point. The blanking time is extended in response to a first reduction of an output loading of the QR converter, while maintaining a primary current of the QR converter at a first current level. The primary current is reduced to a second current level being less than the first current level, while maintaining the blanking time at a maximum blanking time, in response to a second reduction of the output loading.
US10298128B2

In accordance with presently disclosed embodiments, a 5-switch power conversion circuit that improves the power conversion efficiency (PCE) of a DC-DC converter with a double chopper topology is provided. The power conversion circuit adds minimal complexity through an additional switch, while preserving the benefits of a 3-level boost converter topology. The disclosed power conversion circuit uses four switches that are arranged in a 3-level boost converter arrangement, and a fifth switch that is connected in parallel with two of the other switches. The fifth switch helps to reduce the conduction power losses through the DC-DC converter by providing a one-switch ON-state conduction path instead of a two-switch path during part of the DC-DC power conversion cycle.
US10298113B2

A filter for a power converter provided in-line with at least one live line of a power network. The filter has an input section with an input inductance provided at an input of the power converter and an output section with an output inductance provided at an output of the power converter. A neutral inductance provided between the power converter and a neutral line of the power network such that the neutral inductance is not in-line with the neutral line of the power network. The neutral inductance is shared by the input section and the output section.
US10298110B2

A switched mode power converter has an energy transfer element that delivers an output signal to a load. A power switching device coupled to the primary side of the energy transfer element regulates a transfer of energy to the load. A secondary controller is coupled to receive a feedback signal and output a pulsed signal in response thereto. A primary controller is coupled to receive the pulsed signal and output a drive signal in response thereto, the drive signal being coupled to control switching of the power switching device. A compensation circuit generates an adaptively compensated signal synchronous with the pulsed signal. The adaptively compensated signal has a parameter that is adaptively adjusted in response to a comparison of the feedback signal with a threshold reference signal. The parameter converges towards a final value that produces a desired level of the output signal.
US10298108B2

A linear motor (15) comprising a stator (16) having an opening (18), a mover (19) disposed in the opening and configured and arranged to reciprocate linearly in an axial direction (x-x) relative to the stator, the stator comprising a first pole section (21) and a second pole section (22) stacked in the axial direction and forming a recess (26) between them for receiving annular windings, the first pole section comprising a first laminate (17a) having a first cross-sectional geometry (29) and a second laminate (17b) having a second cross-sectional geometry (30) different from the first cross-sectional geometry, and the first laminate and the second laminate stacked in the axial direction.
US10298103B2

A manufacturing method of a laminated core includes forming a first blanking member by blanking a band-shaped metal plate along a predetermined first blanking shape and forming a second blanking member by blanking the metal plate along a predetermined second blanking shape. The first blanking shape has a first-yoke corresponding region corresponding to a first yoke portion and a plurality of first-teeth corresponding regions corresponding to a plurality of first teeth portions. The second blanking shape has a second-yoke corresponding region corresponding to a second yoke portion and a plurality of second-teeth corresponding regions corresponding to a plurality of second teeth portions. The plurality of second-teeth corresponding regions are located between the plurality of first-teeth corresponding regions in a width direction one by one. The second teeth-corresponding region is located closer to one first-teeth corresponding region than a virtual straight line.
US10298101B2

A method and a device for engendering rotation of a rotor relative to a stator. Stator teeth may comprise a mutually coupled coil winding pair, and a driver circuit may drive current through a first coil winding of the mutually coupled coil winding pair to generate a current on a second coil winding of the mutually coupled coil winding pair. The driver circuit may drive charge through the second coil winding to apply a torque to a rotor tooth. The driver circuit may also recapture and store charge to drive through the second coil winding.
US10298096B2

An electric motor includes a shaft extending along an axial direction, a stator, a rotor arranged farther away from the shaft than the stator in a radial direction of the shaft, a stator fixing part fixed to the shaft and fixed to the stator, and a rotor fixing part facing the stator fixing part and the stator with an air gap formed between in the axial direction. The rotor fixing part is rotatably coupled to the shaft and fixed to the rotor. A rotor hole is formed in the rotor fixing part. The rotor hole passes through the rotor fixing part to be communicated with the air gap. A stator hole is formed in the stator fixing part. The stator hole passes through the stator fixing part to be communicated with the rotor hole with the air gap formed between.
US10298080B2

A support rib for securing a rotor pole to a flange in a gearless drive is described. The support rib is undivided and passes through an opening of the flange. The support rib can be joined with the flange and/or the rotor pole using an adhesive. The rib preferably has at least one notch that engages an edge of the flange opening to establish mechanical connection between the rib and flange. An insert with two ends that slideably engages a rib edge and rotor pole channel can be used to couple the rib to the rotor pole.
US10298073B2

The present invention provides a method and an apparatus for controlling the wireless induction power supply. The apparatus comprises a transmitter control circuit and a receiver control circuit. The method comprises generating a plurality of switching signals for switching a transmitter winding and generating a power; detecting a level of a transmitter signal from the transmitter winding; and controlling a switch to deliver the power from a receiver winding to a load. The receiver winding is coupled to receive the power from the transmitter winding. The switching signals will be disabled if the level of the transmitter signal is not higher than a threshold over a first period or the level of the transmitter signal is higher than a high-threshold over a second period. Accordingly, the method and the apparatus according to the present invention have the foreign object detection (FOD) function for the safety.
US10298072B2

A defibrillator for wireless transmission of power and status information, the defibrillator including a housing, a battery, and a processor and memory. The processor configured to periodically power up the defibrillator and execute self-tests to generate status information regarding the self-tests. The defibrillator further include an interface module embedded within the housing and configured to receive the status information regarding the self-tests. The defibrillator also includes a first transceiver configured to receive power from a second transceiver and send the status information to the second transceiver while the first transceiver is within range of the second transceiver. The defibrillator further including a capacitor configured to receive the power from the at least one first transceiver and provide power to the interface module without requiring power from the battery.
US10298064B2

A power receiving unit of the disclosure includes: a power generation section configured to generate direct-current power, based on a power signal supplied wirelessly from a power feeding unit; and a communication section configured to set a load of the power signal in accordance with an output current of the power generation section, and to communicate with the power feeding unit by modulating the load.
US10298062B2

A wireless power transmission apparatus includes resonators configured to transmit a power wirelessly to another resonator, and a controller configured to control a current magnitude and/or a voltage magnitude of a power to be provided to each of the resonators. The apparatus further includes a feeder configured to provide the power to each of the resonators.
US10298061B2

A vehicle including a wireless vehicle recharging system which includes a receiver coupled to the vehicle and configured to receive electrical power through electromagnetic induction from a transmitter, an alignment system including a controller configured to autonomously align the receiver with the transmitter, and a first sensor configured to provide a first signal to the controller. The controller uses the first signal from the first sensor to control a position of the vehicle to align the receiver with the transmitter.
US10298060B2

An apparatus and method of wirelessly powering an aerospace vehicle while the vehicle is on the ground is provided to solve a problem of supplying electric power for aircraft while idling on taxiways. Present systems typically require fuel-driven auxiliary power units (APU's) to generate electricity. Running APU's to power aircraft while idling requires over 443 million gallons of jet fuel annually at a cost of $1.3 billion dollars. This results in an estimated 4.7 megatons of carbon dioxide emissions annually. At the gate, shore power is provided via hardline connection.
US10298058B2

A capacitive wireless power transfer (WPT) architecture that provides for dynamic (i.e., in motion) and/or stationary power transfer is provided. In various implementations, for example, the capacitive WPT architecture can achieve high power transfer levels at high efficiencies while maintaining fringing field strengths within acceptable safety limits. In one implementation, for example, a multi-module capacitive wireless power transfer system provides a capacitive charging system, such as for, but not limited to, charging electric vehicles (EV). In another implementation, a capacitive wireless power transfer module is provided. The module, for example, comprises a plurality of first coupling plates adapted to be coupled to a power source via an inverter; a plurality of second coupling plates adapted to be coupled to a load and to the plurality of first coupling plates for receiving wireless power and a matching network adapted to provide reactive compensation and gain.
US10298055B1

A device may include a power supply module (PSM). The PSM may receive information regarding one or more programmable restrictions associated with a power supply. The PSM may receive a measurement of voltage associated with the power supply. The PSM may determine a current associated with the power supply based on the one or more programmable restrictions, the measurement of voltage, and a first amount of power associated with the power supply. The PSM may cause a load associated with the power supply to be adjusted based on determining the current without removing power for a connection between the power supply and a power source associated with the power supply. The PSM may cause the power supply to provide a second amount of power based on causing the load associated with the power supply to be adjusted.
US10298050B2

A power feeder is provided that comprises a power output signal generator, and a controller. The power output signal generator generates a plurality of power output signals of different strengths. The controller performs an increasing or decreasing control to increase or decrease at least one of the strengths of the power output signals based on the strengths of the power output signals at which an electronic device has been detected.
US10298045B2

A method of controlling an electronic device is provided which includes electrically connecting a battery with an external power source using a first switch such that a first portion of a first current supplied from the external power source is supplied to a system circuit of the electronic device and a second portion of the first current is supplied to the battery, determining whether a specified condition is satisfied, electrically disconnecting the battery from the external power source using the first switch and electrically connecting the battery with a resistor using a second switch, if the specified condition is satisfied, verifying an electrical characteristic of a current applied to the resistor while the battery is electrically disconnected from the external power source and is electrically connected with the resistor, and determining whether an operation of the battery is abnormal, based at least on a part of the electrical characteristic.
US10298038B2

A circuit for use with an external power source and at least one load. The circuit includes a Hydro-Pyroelectrodynamic (“H-PED”) storage/capture device (“SCD”), a plurality of contacts, and a recharging device. The H-PED SCD stores electrical energy and is configured to discharge power to at least one output contact of the plurality of contacts. The plurality of contacts also include an input contact configured to be connected to the external power source. The recharging device is configured to be powered by the external power source when the external power source is connected to the input contact and supplies power thereto. The recharging device is operable to charge the H-PED SCD when powered by the external power source. The recharging device may be an infrared light emitting diode configured to generate incident infrared radiation operable to charge the H-PED SCD.
US10298037B2

Embodiments describe a charging component for an electronic device that includes an interface surface comprising a portion of an external surface of a housing of the electronic device; a plurality of contacts positioned at the interface surface and exposed for making contact with contacts of a connector; one or more sensors for detecting a separation event; an inductor coil positioned proximate to the interface surface, wherein a central axis of the inductor coil is perpendicular to at least a portion of the interface surface; and a processor coupled to the inductor coil and the one or more sensors, wherein the processor is configured to change an operation of the inductor coil based at least in part on a measurement from the one or more sensors.
US10298029B2

A battery pack for providing different power sources may include: a low voltage battery configured to supply a first voltage; a high voltage battery configured to supply a second voltage, the second voltage being higher than the first voltage; a charging circuit configured to charge the low voltage battery using the high voltage battery; and/or a controller configured to control the charging circuit to charge the low voltage battery when a charge state of the low voltage battery is less than a desired charge state.
US10298027B2

The method is disclosed of controlling a switch circuit which includes a first switching unit configured to switch between energy accumulation and energy release in a coil, and second switching units configured to connect or disconnect a plurality of corresponding storage batteries with the coil. The method comprises a first step of performing an operation to switch on the first switching unit and to switch off the second switching units; and a second step of performing an operation to switch off the first switching unit and to switch on only one of the second switching units.
US10298025B2

A power supply apparatus includes a power supply unit that wirelessly supplies power to an electronic apparatus, a communication unit that communicates with the electronic apparatus, and a control unit that controls, based on whether information regarding the electronic apparatus that is received from the electronic apparatus is updated by the electronic apparatus, power to be supplied from the power supply apparatus to the electronic apparatus.
US10298022B2

A power supply control system includes: a current sensor as a first detector detecting current flowing in each controller in an operating state of each controller; a first current controller turned on to supply a driving current to each controller in the operating state of each controller and turned off to disconnect the driving current supply to each controller based on a determination result; a second current controller turned on to supply a dark current to each controller in a power-saving state of each controller and turned off to disconnect the dark current supply to each controller in the operation state of each controller; a dark current sensor as a second detector detecting a voltage drop amount in the power-saving state of each controller; and an anomaly determinator determining existence of anomaly in the power-saving state of each controller based on a detection result obtained from the second detector.
US10298021B2

A power balance-dependent operating parameter and a surroundings parameter of a first energy source, such as a renewable energy source, are provided. A variable target operating parameter for the first energy source is ascertained dependent on the detected surroundings parameter. The target operating parameter can characterize a first energy source state in which a maximally possible output would be generated under the current given conditions of the surroundings. The operating frequency is then controlled dependent on the detected power balance dependent operating parameter and the ascertained target operating parameter such that a deviation of the operating frequency from a specified frequency is coupled to a deviation of the detected power balance-dependent operating parameter from the ascertained target operating parameter.
US10298018B2

A power control apparatus includes a plurality of transformers configured to transform power generated by a plurality of solar cell strings, and a controller configured to control the transformers. The transformers each include a diode configured to prevent a reverse flow of power to be output from the transformer itself and a switch configured to open or close a connection between the solar cell string and an inverter. When a diode of one of the transformers has failed to prevent the reverse flow of the power to be output from the one of the transformers, the controller first opens the switches of all of the transformers and then closes the switches of the transformers other than the switch of the one of the transformers.
US10298011B2

An electric storage apparatus includes an electric storage device and a protective circuit for cutting off a power path when detecting abnormality including overcharge, the protective circuit being connected to an outside connecting terminal, to which a power generator and an outside load operated by electric power from the electric storage apparatus are connected. The protective circuit includes a charging or discharging path connecting the electric storage device to the outside connecting terminal, a potential difference measuring unit for measuring a potential difference at two points on the charging or discharging path, the two points on the charging or discharging path being located between a positive electrode of the electric storage device and the outside connecting terminal, a self-holding switch disposed between the two points on the charging or discharging path, and a current measuring unit for measuring a current.
US10298006B2

An energy storage system and method of driving the same are disclosed. In one aspect, the energy storage system comprises a battery system, a direct current (DC) contactor, first and second power supply units, and a first switch. The battery system includes at least one battery rack and at least one rack battery management system (BMS). The DC contactor is located between the battery system and a power conversion system. The first power supply unit is configured to be electrically connected to the DC contactor. The second power supply unit electrically connected to the rack BMS. The first switch is electrically connected to the rack BMS, wherein the rack BMS is configured to electrically disconnect the DC contactor from the first power supply unit when the first switch is turned on.
US10298005B2

An electrical penetrator assembly is shown, configured to feed electrical voltage and current through a wall separating a first volume and a second volume, which may have different pressure and/or may be filled with different fluids. The connector comprises a wall or partition having a through opening. An electrical conductor surrounded by a tubular insulator body passes the opening through the wall. A conductive or semi-conductive coating is arranged on the exterior of the insulator body, the coating surrounding the insulator body for a portion of its length, the coating in electrical contact with the wall, wherein the coated portion of the insulator body is shaped to displace the electric field around the conductor away from the wall and reduce the electric field strength around the insulator body by increasing the electric field strength inside the insulator body.
US10298000B2

A door hole seal is provided between an inner panel and a door trim of an automobile door. The door hole seal comprises a slit mechanism used to pull out a wire harness from an outer-cabin side to an inner-cabin side or from the inner-cabin side to the outer-cabin side. The slit mechanism comprises a first slit extending up and down with respect to the main sheet and a circular hole formed at a lower end of the first slit. The circular hole has a diameter that is identical to or slightly smaller than that of a wire harness, and is arranged to receive the wire harness.
US10297994B2

A substrate holding structure includes holding units and protrusions. The holding units are provided to a casing that includes an accommodating unit accommodating therein an inserted substrate, and hold an end part of the substrate accommodated in the accommodating unit on the insertion direction-entrance side of the substrate. The protrusions protrude from side wall surfaces that are wall surfaces of the casing along the insertion direction of the substrate, the wall surfaces being opposed to the side surfaces of the substrate, and are plastically deformed due to contact with the substrate to be inserted into the accommodating unit.
US10297991B2

A cable armour stripping unit is provided, including a frame configured to accommodate a transmission cable having a plurality of armoured outer layers arranged about an inner sheath enclosing a plurality of conductors and to hold a cutter arrangement including at least one cutting tool arranged to cut into an armoured outer layer of the cable; a vertical feed arrangement configured to effect a translation of the frame relative to the cable, and a rotation arrangement configured to effect a rotation of the frame relative to the cable. A method of stripping armour from a transmission cable is also provided.
US10297986B2

An arc-resistant electrical enclosure includes an arresting system that permits forced-air cooling of the interior region to occur during ordinary operation of the enclosure while resisting the flow of hot gases, plasma, and flames to the exterior of the electrical enclosure in an arc event or other event. The arresting system advantageously includes a louver apparatus and a cover apparatus that work in conjunction to resist the flow of gases, plasma, and flames to the exterior of the cabinet in an arc event. The louver apparatus includes louvers that can be moved from an open state to a closed state responsive to a predetermined fluid pressure impinging on the louvers. The cover apparatus includes a fire blocking panel that permits fluid flow therethrough during ordinary operation but which, responsive to a flame, initiates a transformation from one state to another state wherein the openings resist the communication of flames therethrough.
US10297985B2

An electrical distribution apparatus has a bus bar assembly, a protective shroud, and electrical devices mounted therein. The electrical devices have a main housing, a line side housing for line side connectors and jaws, a securement portion for mounting the electrical device in a back pan of the electrical distribution apparatus. A method for mounting the electrical device in the electrical distribution apparatus is provided. A method for forming the line side connector assembly and installing the line side connector assembly to the main housing of the electrical device is also provided.
US10297984B2

The present disclosure is directed to ion generators and their enclosures that include a base, a non-linear wall projecting from the base, a top connected to the non-linear wall a top connected to the non-linear wall, wherein the base, the non-linear wall and the top form a closed space, and at least one ionizing element extending from the enclosure, wherein the at least one ionizing element is configured to receive a voltage capable of producing ions from a power source in the closed space.
US10297983B2

A spark plug has an electrode including a base portion and a tip joined to a specific surface that is a specific outer surface of the base portion, the tip forming a spark discharge surface. Respective relative positions of a plurality of points on an outer surface of a target portion of the electrode including the base portion and the tip joined to the base portion, which is a portion including at least a portion of the specific surface of the base portion and the tip, are identified to generate three-dimensional coordinate data representing the three-dimensional shape of the target portion. The coordinate data is analyzed to determine whether the target portion of the electrode includes a predetermined unintentional portion that is an unintended portion. An electrode including the unintentional portion is excluded from objects to be manufactured, and an electrode not including the unintentional portion is used to assemble the spark plug.
US10297981B2

The disclosed embodiments relate to the design of a hybrid laser comprising a shared ring mirror coupled to a pair of buses by a 3 dB coupler (also referred to as a “symmetric splitter”), which is described in more detail below. Each bus is also coupled to an array of ring filters, wherein each ring filter couples an associated reflective silicon optical amplifier (RSOA) to the shared ring mirror and in doing so forms a Verniered ring pair with the shared ring mirror. The resulting system provides a comb source with redundant channels that can provide individual outputs or a shared output. This hybrid laser provides a significant improvement over existing comb-based lasers by providing redundancy for at least one laser channel.
US10297977B1

A laser illumination or dazzler device and method. More specifically, examples of the present invention provide laser illumination or dazzling devices power by one or more violet, blue, or green laser diodes characterized by a wavelength from about 390 nm to about 550 nm. In some examples the laser illumination or dazzling devices include a laser pumped phosphor wherein a laser beam with a first wavelength excites a phosphor member to emit electromagnetic at a second wavelength. In various examples, laser illumination or dazzling devices according to the present invention include polar, non-polar, or semi-polar laser diodes. In a specific example, a single laser illumination or dazzling device includes a plurality of violet, blue, or green laser diodes. There are other examples as well.
US10297974B2

A method of generating laser pulses (1) includes: creating a circulating light field in resonator device (11) having resonator length L and an intra-cavity dispersion and configured for supporting light field resonator modes, and generating a pulse train of laser pulses (1) by a mode-locking mechanism. Laser pulses (1) are generated with a repetition frequency and provide a frequency comb with carrier frequency ωo and comb modes in frequency space. The intra-cavity dispersion is selected such that round trip phases ϕ have a dependency on frequency ω according to ϕ ⁡ ( ω ) = π ⁢ ⁢ m ⁡ ( 1 + 4 ⁢ ⁢ ω - ω 0 m ⁢ ⁢ ω r - 1 ) + L c ⁢ ω 0 wherein m is an integer providing effective repetition rate (mωr) in combination with mode spacing ωr at optical carrier frequency (ωo), and the mode-locking mechanism provides a coupling of the resonator modes whereby frequency difference (Δn=ωn+1−ωn) between neighboring mode frequencies (ωn, ωn+1) is a linear function of mode frequency number n. Furthermore, a spectroscopy method for investigating a sample, a laser pulse source apparatus and a spectroscopy apparatus are described.
US10297971B2

A multi-stage optical amplifier has an input port for receiving an optical signal and a relatively short erbium doped optical fiber is coupled to the input port. Complex costly pump feedback is not required as a constant non-varying saturation pump is configured to provide non varying output power pump light of a predetermined wavelength suitable for excitation and full saturation of the erbium ions such that a full population inversion occurs. The length of the short erbium doped fiber and rare earth doping concentration of the erbium doped fiber is such that when pumped by said pump provides amplification of the optical signal of less than 15 dB. Locating a gain flattening filter after the short erbium doped optical fiber provides a relatively flat amplified output signal. Multi-stages of similar short erbium doped fibers pumped and saturated by the same pump signal economically provide increased amplification of the signal and filters after each state flatten the gain.
US10297967B2

A socket module of a rotatable socket device includes a first conductor, a second conductor, an insulator that is arranged to separate the first conductor from the second conductor, and a plurality of terminal sets. The first conductor includes a first base and a plurality of central rods connected to the first base. The second conductor includes a second base and a plurality of tubes connected to the second base. The tubes are respectively sleeved around the central rods. Each of the central rods and the corresponding tube are separated from each other by the insulator. The terminal sets are respectively rotatable along the central rods within a range of 360 degrees. Each of the terminal sets includes a first terminal rotatably contacting the corresponding central rod and a second terminal rotatably contacting the tube that is sleeved around the corresponding central rod.
US10297959B2

An electrical cord having improved safety features comprises a plug having a body portion surrounding respective ends of first, second, and third electrical wires. A live receptacle is in electrical communication with the end of the first electrical wire. A neutral receptacle is in electrical communication with the end of the second electrical wire. A ground receptacle is in electrical communication with the end of the third electrical wire. The body portion surrounds and maintains the live, neutral, and ground receptacles in spaced apart orientation corresponding to blades on an electrical plug. An indicator is provided to indicate a state of the plug in which electricity is supplied to the plug in a proper polarity.
US10297953B1

Apparatus and methods for electrically grounding a support surface includes an at least partially perforated, electrically-conductive cover configured to extend at least partially across the top of the support surface and be electrically grounded to the earth.
US10297951B2

A connector (100) is provided. The connector (100) includes a connector body (110) with a connector axis (X), the connector body (110) being comprised of an interface (112) at a first distal end (110a) of the connector body (110), an opening (114) at a second distal end (110b) of the connector body (110), and a conduit (116) extending from the interface (112) to the opening (114) along the connector axis (X). The connector (100) also includes a latch (120) that moves relative to the connector body (110) to selectively engage a plug connector (200), the latch (120) being comprised of a pivot end (122) coupled to the connector body (110), a manually operable end (124), and a latching feature (126) disposed between the pivot end (122) and the manually operable end (124).
US10297950B2

Disclosed is a magnetic connector comprising a body having a mounting cavity, the body comprising a PCB received in the mounting cavity, a first conductive terminal soldered to one side of the PCB and extending toward an opening of the mounting cavity, a first magnet disposed along the periphery of the PCB and on the same side as the first conductive terminal. The body further has a first anti-off device which is formed with an insulating bushing enclosing the first conductive terminal or the first magnet. The magnetic connector provided by the present invention has advantages that the connection is more stable and more durable, that the service life is longer, and that a certain degree of solid connection can be maintained even if a part of the anti-off device has failed, which is of a good fault tolerance.
US10297942B1

A grounding connector connectable to first and second electrical conductors includes a first body member and a second body member, each of the first and second body members connectable together to form a plurality of passages therebetween. One of the first or second body members further includes one of a locking channel or a locking tab and the other of the first or second body members further includes the other of a locking channel or a locking tab. The locking tab is disposed in the locking channel when the first and second body members are assembled together.
US10297940B2

A terminal (10) includes a rectangular tubular box (20) that is open in a front-rear direction. The box (20) includes a bottom wall (30), first and second side walls (40,50) rising from sides (31) of the bottom wall (30), a ceiling wall (60) extending from an upper edge (41) of the first side wall (40) toward the second wall (50) and an outer wall (70) extending from an upper end(51) of the second side wall (50) toward the first side wall (40) along an upper surface of the ceiling wall (60). A holding piece (74F) projects on an extending end part (73F) of the outer wall (70). A holding recess (45F) is provided on an upper end part of the first side wall (40) and receives the holding piece (74F) so that a part of the holding piece (74F) is located inside the box (20).
US10297935B2

The invention discloses a circuit board output structure, which includes a power output section disposed on a circuit board and at least one metal connection stand electrically connected to the power output section. Each metal connection stand includes a first connection piece showing an included angle with respect to the circuit board. A plurality of connection holes for electrically connecting output wires are formed on the first connection piece. When it is required to change an output specification, the replacement can be more simple and convenient since the metal connection stand may be directly replaced without replacing the whole circuit board. Because the first connection piece has the included angle specified with respect to the circuit board, R angle and stress of the inserted output wires may be reduced to prevent the output wires from damage, detaching from the circuit board or having poor electrical contact after the assembly.
US10297933B2

A wire plug-in aid sleeve structure for wire connection terminal is assembled in a wire plug-in hole of the terminal. The aid sleeve includes a head section, a belly section connected with the head section and a tail section connected with the belly section. The head section, the belly section and the tail section together define a guide hole for the conductive wire to plug in. The tail section has a first side and a second side positioned on a peripheral section of the guide hole. After the conductive wire passes through the guide hole into the terminal, the metal leaf spring disposed in the terminal is facilitated to press the conductive wire toward the first side or second side.
US10297926B2

The radar transceiver assembly configured to reduce ghost lobes and narrow the receive beams so as to provide a better image resolution relative to current radar transceiver assemblies is provided. The radar transceiver assembly includes a first transceiver chip and a second transceiver chip mounted on opposite sides of the substrate. The accordingly, space on the first support surface may be utilized for antennas. The first array of transmit antennas and first array of receive antennas is interleaved with the second array of transmit antennas and the second array of receive antennas. The second array of transmit antennas and the second array of receive antennas are electrically coupled to the second transceiver chip via a coupling structure.
US10297925B2

A semiconductor device includes an active device. The semiconductor device further includes a plurality of antenna grounds electrically connected to the active device. The semiconductor device further includes a plurality of patch antennas, wherein each patch antenna of the plurality of patch antennas is over a corresponding antenna ground of the plurality of antenna grounds. The semiconductor device further includes a plurality of reflectors, wherein each antenna ground of the plurality of antenna ground is between a corresponding patch antenna of the plurality of patch antennas and a corresponding reflector of the plurality of reflectors. An area of each antenna ground of the plurality of antenna grounds is greater than an area of each reflector of the plurality of reflectors.
US10297923B2

Disclosed is a switchable transmit and receive phased array antenna (“STRPAA”). As an example, the STRPAA may include a housing, a multilayer printed wiring board (“MLPWB”) within the housing having a top surface and a bottom surface, a plurality of radiating elements located on the top surface of the MLPWB, and a plurality of transmit and receive (“T/R”) modules attached to the bottom surface of the MLPWB. The STRPAA may also include a plurality of vias, wherein each via, of the plurality of vias, passes through the MLPWB and is configured as a signal path between a T/R module, of the plurality of T/R modules, on the bottom surface of the MLPWB and a radiating element, of the plurality of radiating elements, located on the top surface of the MLPWB opposite the T/R module.
US10297917B2

The present invention is a dual Ka-band, compact, high efficiency CP antenna cluster with dual band compact diplexers-polarizers that can be used as a basic building block for mobile satellite antenna arrays that require minimal dimensions and high efficiency.
US10297905B2

A mobile device includes a ground element, a first radiation element, a second radiation element, a matching circuit, and a first metal frame. The first radiation element is coupled to a first grounding point on the ground element. The second radiation element is coupled through the matching circuit to a second grounding point on the ground element. A first coupling gap is formed between the second radiation element and the first radiation element. The first metal frame is coupled to a connection point on the first radiation element. A second coupling gap is formed between the second radiation element and the first metal frame. An antenna structure is formed by the first radiation element, the second radiation element, the matching circuit, and the first metal frame. A signal source is coupled to a feeding point on the first radiation element, so as to excite the antenna structure.
US10297901B2

A wireless terminal is disclosed. The wireless terminal includes a first antenna, a second antenna, a printed circuit board, a bracket, and a resonator, where the first antenna is located at one side of the printed circuit board, the second antenna is located at another side of the printed circuit board, the printed circuit board functions as a metal ground of the first antenna and the second antenna, the resonator is located on the bracket, a ground point of the resonator is located on the printed circuit board, and a clearance exists between the resonator and the printed circuit board, the bracket is plastic bracket.
US10297898B2

The subject matter disclosed herein describes integrating an antenna with a connector shroud of an electronic device used for conducting diagnostics. By integrating the antenna with the connector shroud, the device can be made smaller while still allowing for effective communication of results wirelessly to a remote system. In implementations such as On-board Diagnostics (OBD) II for motor vehicles, this may allow the device to remain present in the vehicle, conveniently while driving, for continuous monitoring and diagnostic feedback to a remote system, by consuming the least amount of space which may be needed by the driver.
US10297897B2

A glass antenna arranged on a vehicle window glass includes a slot antenna formed by cutting out a conductive film; and a power supply unit configured to supply power to the slot antenna. The slot antenna includes a first slot extending in a first direction; a second slot connected to one end of the first slot, and extending in a second direction, a first wide-width slot connected to the other end of the first slot directly or via a first connection slot, and having a slot width greater than that of the first slot, and a second wide-width slot connected to a terminal end portion of the second slot directly or via a second connection slot, and having a slot width greater than that of the second slot. The power supply unit is arranged so as to straddle the first slot.
US10297896B2

The invention relates to a three-dimensional LC electrical resonator device having a given resonant frequency of 100 gigahertz or more, comprising: a separating layer; a first track made of a conductor and comprising two overlapping portions; and a second track made of a conductor, the second track comprising two overlapping portions and an inductive loop connecting the two overlapping portions, the first track and the second track respectively being formed on either side of the separating layer, each overlapping portion of the first track being placed facing a respective overlapping portion of the second track so as to form two capacitors that are spatially spaced apart from each other.
US10297892B2

When a plurality of RF signals having different frequer bands are output at the same time by carrier aggregation, a switch element allows parallel connection between two capacitance elements such that a low pass filter has a first cut-off frequency that is lower than the frequency of an intermodulation distortion signal generated by the carrier aggregation. When an RF signal of a frequency band is output, the switch element releases parallel connection between the two capacitance elements such that the low pass filter has a second cut-off frequency that is higher than the first cut-off frequency.
US10297890B2

The invention provides a method of storing varying or intermittent electrical energy and one or more of hydrogen (H2) and oxygen (O2) with an energy apparatus, the method comprising: providing the first cell aqueous liquid, the second cell aqueous liquid, and electrical power from an external power source to the functional unit thereby providing an electrically charged functional battery unit and one or more of hydrogen (H2) and oxygen (O2) stored in said storage system, wherein during at least part of a charging time the functional unit is charged at a potential difference between the first cell electrode and the second cell electrode of more than 1.37 V.
US10297882B2

A battery system includes a plurality of battery cells and a temperature-control element that is thermally conductively connected to the battery cells via a temperature-control surface. The temperature-control element has a temperature-control channel in an interior of the temperature-control element. The temperature-control channel is routed on the forward flow side via an inlet and on the return flow side via an outlet from the temperature-control element. A bypass is connected to the temperature-control channel via a dividing node and a merging node with the dividing node being arranged closer to the inlet than the merging node. A motor vehicle includes the battery system.
US10297876B2

Embodiments include methods and products for evaluating microbatteries. The microbattery includes a cathode layer, an anode layer physically separated from the cathode layer, and an electrolyte layer in contact with the anode and the cathode. The microbattery also includes at least one auxiliary electrode in physical contact with the electrolyte layer, the auxiliary electrode containing at least one metal coating and at least one non-conductive film, wherein the at least one metal coating is physically separated from the cathode and the anode.
US10297875B2

The invention is directed toward a battery including an on-cell indicator. The battery including an on-cell indicator includes at least one electrochemical cell; at least one on-cell indicator; a printed circuit board; and at least one integrated circuit. The at least one electrochemical cell includes a first terminal and a second terminal. The at least one on-cell indicator includes at least one on-cell indicator terminal. The printed circuit board includes at least one on-cell indicator contact and at least one electrochemical cell contact. The at least one electrochemical cell contact is in electrical connection with the first terminal of the at least one electrochemical cell. At least one conductive trace includes an on-cell indicator interconnect and a printed circuit board interconnect. The on-cell indicator interconnect is in electrical connection with the at least one on-cell indicator terminal. The printed circuit board interconnect is in electrical connection with the at least one on-cell indicator terminal. At least one integrated circuit is in electrical connection with the printed circuit board.
US10297874B2

A method of manufacturing an all-solid-state battery includes a lamination step of laminating a deactivated lithium-containing negative electrode active material layer containing deactivated lithium, a solid electrolyte layer for the all-solid-state battery, and a positive electrode active material layer for the all-solid-state battery such that the solid electrolyte layer for the all-solid-state battery is disposed between the deactivated lithium-containing negative electrode active material layer and the positive electrode active material layer for the all-solid-state battery.
US10297869B2

Provided is a highly reliable nickel-zinc battery including a separator exhibiting hydroxide ion conductivity and water impermeability. The separator is disposed in a hermetic container to separate a positive-electrode chamber accommodating a positive electrode and a positive-electrode electrolyte from a negative-electrode chamber accommodating a negative electrode and a negative-electrode electrolyte. The positive-electrode chamber has an extra positive-electrode space having a volume that meets a variation in amount of water in association with reaction at the positive electrode during charge and discharge of the battery, and the negative-electrode chamber has an extra negative-electrode space having a volume meeting a variation in amount of water in association with reaction at the negative electrode during charge and discharge of the battery. The nickel-zinc battery further includes a gas flow channel that connects the extra positive-electrode space to the extra negative-electrode space such that the spaces are in gas communication with each other.
US10297867B2

A sheet-laminated lithium ion secondary battery comprising: a membrane electrode assembly which comprises a cathode sheet comprising a cathode current collector having formed thereon a cathode active material layer, and an anode sheet comprising an anode current collector having formed thereon an anode active material layer, the cathode sheet and the anode sheet being laminated through a separator; and a sheet outer casing having accommodated therein the membrane electrode assembly, wherein, in the membrane electrode assembly, a sheet thermoplastic resin layer is inserted as at least one of an interlayer between the cathode sheet and the separator, and an interlayer between the anode sheet and the separator.
US10297866B2

Disclosed herein is a battery pack configured to have a structure including a plate-shaped battery cell having electrode terminals formed at one side thereof including a sealed surplus part and a protection circuit module (PCM) mounted at the sealed surplus part, wherein each of the electrode terminals of the battery cell is made of a plate-shaped conductive member, the PCM includes a protection circuit board (PCB), a safety element electrically connected between one of the electrode terminals of the battery cell and the PCB or loaded on the PCB, an external input and output terminal electrically connected to a protection circuit of the PCB, and an electrically insulative module case in which the PCB and the safety element are mounted in a state in which the external input and output terminal extends outside, the PCM is loaded on the sealed surplus part of the battery cell in a state in which the PCM is received in the module case such that the PCM is electrically connected to the electrode terminals of the battery cell, and the module case includes a PCB receiving part open outward at one side thereof and an adhesive fixing tape is attached to an outer surface of the module case contacting the sealed surplus part.
US10297864B2

A composite electrolyte including a polymeric ionic liquid; and an oligomeric electrolyte, wherein the oligomeric electrolyte includes an oligomer.
US10297861B2

The present invention aims to provide an anion conducting material having excellent anion conductivity and durability, which can be suitably used as a separator, an electrolyte, or an electrode protecting agent of an alkaline cell, for example. The present invention also aims to provide a cell including a cell component containing the anion conducting material. The present invention provides an anion conducting material containing a polymer and a compound containing at least one element selected from Groups 1 to 17 of the periodic table.
US10297853B2

A solid oxide fuel cell with a dense barrier layer formed at or near the outer surface of the top and/or bottom electrode layers in a fuel cell stack. The dense barrier layer (DBL) acts as a seal to prevent gas in the electrode layer (either air in a cathode layer or fuel gas in an anode layer) from leaking out of the stack though the outer surface of the outermost electrode layers. The use of a DBL with porous outer electrode layers reduces the amount of gas escaping the stack and minimizes the chances for leak-induced problems ranging from decreases in performance to catastrophic stack failure.
US10297850B2

A membrane electrode assembly is prepared by sandwiching an electrolyte membrane between an anode and a cathode. In the anode, a first porous layer is interposed between a first electrode catalyst layer and a first gas diffusion layer. In the cathode, a second porous layer is interposed between a second electrode catalyst layer and a second gas diffusion layer. A first piled body of the first gas diffusion layer and the first porous layer has a percolation pressure higher than that of a second piled body containing the second gas diffusion layer and the second porous layer. The first piled body has a percolation pressure of 25 to 120 kPa, and the second piled body has a percolation pressure of 5 to 25 kPa.
US10297847B2

A SOFC system having a fuel reformer for reforming a gaseous hydrocarbon stream and steam into a hydrogen rich gas, a solid oxide fuel cell stack including an anode and a cathode for electrochemically reacting the hydrogen rich gas and a cathode air stream to produce electricity, an anode exhaust stream and a cathode depleted air stream. The anode exhaust stream and the cathode depleted air stream are kept separate, a burner for combusting a mixture of the anode exhaust stream and a fresh air stream to complete combustion and produce heat for the reformer control unit and a blower are also provided. The control unit controlling the blower for controlling the mass flow rate of the fresh air stream to provide heat to the reformer to reform the gaseous hydrocarbon stream and to produce a burner exhaust stream.
US10297843B2

A MEA is set in a state where a hydrogen gas is continuously supplied to both an anode-side electrode and a cathode-side electrode. In this state, a current is applied from an external power supply unit to the anode-side electrode and the cathode-side electrode so that the cathode-side electrode has a higher potential and that the current value gradually increases. Upon applying the current in this way, measured voltages between both electrodes measured by a voltage measurement unit are plotted in time series, thereby measuring the voltage transition across the inspection object MEA. A power generation performance inspection of the inspection object MEA is carried out based on the measured voltage transition.
US10297838B2

An apparatus including a first electrode including a substantially homogeneous mixture of graphene oxide and a proton conductor; a second electrode including reduced graphene oxide; and spaced-apart charge collectors for the respective first and second electrodes, wherein the first and second electrodes extend from their respective charge collectors towards one another to form a junction at an interface there between, and wherein the substantially homogeneous mixture of the first electrode is configured to be sufficiently hydrophobic to prevent intermixing of the homogeneous mixture with the reduced graphene oxide of the second electrode in proximity to one or both of the respective charge collectors to prevent short circuiting of the spaced-apart charge collectors.
US10297833B2

A gas diffusion electrode and a method for manufacturing the same, the gas diffusion electrode being used for a fuel cell and configured by forming a microporous layer containing conductive microparticles and water-repellent resin on at least one surface of a conductive porous base material, wherein the gas diffusibility in the thickness direction thereof is 30% or more, the conductive porous base material has a sliding angle of 70° or less and a porosity of 80% or more, and the microporous layer has a thickness of 10-50 μm inclusive, and a porosity of 60-95% inclusive.
US10297832B2

A system and method for manufacturing a micropillar array (20). A carrier (11) is provided with a layer of metal ink (20i). A high energy light source (14) irradiates the metal ink (20i) via a mask (13) between the carrier (11) and the light source. The mask is configured to pass a cross-section illuminated image of the micropillar array onto the metal ink (20i), thereby causing a patterned sintering of the metal ink (20i) to form a first subsection layer (21) of the micropillar array (20) in the layer of metal ink (20i). A further layer of the metal ink (20i) is applied on top of the first subsection layer (21) of the micropillar array (20) and irradiated via the mask (13) to form a second subsection layer (21) of the micropillar array on top. The process is repeated to achieve high aspect ratio micropillars 20p.
US10297831B2

An object of the present disclosure is to provide an anode layer for a fluoride ion battery in which decomposition of a binder is restrained. The present disclosure attains the object by providing an anode layer to be used for a fluoride ion battery, the anode layer comprising an anode active material and a non-fluorine-based binder having aromaticity.
US10297827B2

An electrochemical cell including at least one nitrogen-containing compound is disclosed. The at least one nitrogen-containing compound may form part of or be included in: an anode structure, a cathode structure, an electrolyte and/or a separator of the electrochemical cell. Also disclosed is a battery including the electrochemical cell.
US10297809B2

A secondary battery includes: a case having an opening; an electrode assembly in the case; a cap plate for sealing the opening of the case; and an electrode unit penetrating through the cap plate, and electrically coupled to the electrode assembly. The electrode unit includes: a current collector coupled to the electrode assembly; and a lead coupled to the current collector and penetrating through the cap plate. The current collector and the lead are coupled to each other by inserting an assembling portion of the lead into an accommodation opening formed in the current collector. Thus, a structure of a coupling portion of the electrode unit for forming charging/discharging paths coupled to the electrode assembly may be improved, and accordingly, an effective internal volume of a case in which the electrode assembly is accommodated and a battery capacity of the electrode assembly may be increased.
US10297805B2

A method is provided for producing a separator by cutting a laminated porous film. The laminated porous film includes a porous base material layer containing polyolefin as a main component and a filler layer containing inorganic particles as a main component. The filler layer is provided on one surface of the porous base material layer; and a resin layer containing resin particles as a main component is provided on the other surface of the porous base material layer. The method includes a step of cutting, using a slit blade, the laminated porous film from the one surface on which the filler layer is provided.
US10297794B2

An OLED display device includes a substrate. A first electrode is disposed on the substrate. An organic light emitting layer is disposed on the first electrode. A second electrode is disposed on the organic light emitting layer. A thin film encapsulation layer is disposed on the second electrode. The thin film encapsulation layer includes at least one inorganic layer and at least one organic layer that is disposed alternately with the at least one inorganic layer. The at least one organic layer includes a low refractive index layer overlapping the organic light emitting layer and a high refractive index layer disposed on the low refractive index layer. The high refractive index layer includes a convex surface protruding toward the organic light emitting layer.
US10297792B2

A display device including a micro-cavity structure and a method for forming the same is provided. The display device includes light-emitting structures on pixel areas. In the display device, each of the pixel areas may realize a color different from an adjacent pixel area. In the display device, each of the light-emitting structures may include a reflective electrode, a resonant layer and a transparent electrode, which are sequentially stacked. In the display device, a side surface of the resonant layer and a side surface of the transparent electrode of the light-emitting structure may be surrounded by an interlayer insulating layer. Thus, in the display device, the reliability and the production efficiency may be improved.
US10297787B2

Disclosed herein are methods for welding a first substrate and a second substrate, the method comprising bringing the first and second substrates into contact to form a substrate interface, and directing a laser beam operating at a predetermined wavelength through the second substrate onto the substrate interface, wherein the first substrate absorbs light from the laser beam in an amount sufficient to form a weld between the first substrate and the second substrate. The disclosure also relates to glass and/or glass-ceramic packaging and OLED display produced according to the methods disclosed herein.
US10297779B1

The disclosure provides an OLED display device and a process for manufacturing the same, wherein the OLED display device includes a substrate, a first electrode, an organic functional layer, a second electrode, a polymer dispersed liquid crystal (PDLC) layer, and an upper electrode stacked in sequence, wherein the first electrode is an opaque electrode, and the second electrode is a semi-transparent electrode, and a micro-cavity structure consists of the first electrode, the organic functional layer, and the second electrode. The disclosure implements anti-peeping function and ensures the privacy of the display contents of the OLED display device while doing no harm to the organic functional layer. The disclosure also ensures that the display contents of the OLED display device can be dearly seen in a variety of angle.
US10297773B2

A wiring pattern manufacturing method includes: applying a liquid body including a first formation material on a substrate to form a base film; applying a liquid body including a second formation material on at least part of a surface of the base film to form a protection layer of the base film; forming a resist layer on a surface of the protection layer to expose the resist layer with desired patterning light; causing the exposed resist layer to come into contact with a developer to remove the resist layer and the protection layer until the base film is uncovered corresponding to the patterning light; and after depositing a catalyst on a surface of the uncovered base film, causing an electroless plating solution to come into contact with the surface of the base film to perform electroless plating.
US10297766B2

A composition contains a compound represented by the following formula: where M represents either of Si and Sn, R1 to R8 each independently represent an alkyl group containing three or less carbon atoms, and R9 to R14 each independently represent an alkyl group.
US10297759B2

The present disclosure relates to a novel compound having excellent hole injection capabilities and transport capabilities, light-emitting capabilities, and the like, and an organic electroluminescent device which includes the compound in one or more organic material layers thereof so as to improve characteristics such as light-emitting efficiency, driving voltage, and a service life.
US10297753B2

The present disclosure relates to a manufacturing method of flexible OLED. The method includes: S1: forming an anode and a hole transport layer on substrate being stacked in sequence, and forming a cathode and an electron transport layer being stacked in sequence; S2: applying an acidification process to a surface of the electron transport layer to obtain a cover assembly, and applying the acidification process to a surface of the hole transport layer; S3: forming a stopper chamber on the hole transport layer after being applied with the acidification process; S4: injecting liquid luminescent material into the stopper chamber to form a light emitting layer so as to obtain the substrate; S5: clasping the cover assembly on the substrate, and configuring the electron transport layer being applied with the acidification process to face toward the light emitting layer so as to obtain the flexible OLED.
US10297749B1

A method for forming an electrical device including a resistive switching memory cell in combination with a transistor. In some embodiments, the method may include forming a semiconductor device including a source region and a drain region on opposing sides of a channel region. A dielectric layer may be formed over the semiconductor device. A drain via opening may be formed through the dielectric layer to expose an upper surface of the drain region of the semiconductor device. A resistive random access memory cell is formed in the drain via opening in direct contact with the drain region of the semiconductor device.
US10297745B2

A bottom pinned perpendicular magnetic tunnel junction (pMTJ) with high TMR which can withstand high temperature back-end-of-line (BEOL) processing is disclosed. The pMTJ includes a composite spacer layer between a SAF layer and a reference layer of the fixed magnetic layer of the pMTJ. The composite spacer layer includes a first non-magnetic (NM) spacer layer, a magnetic (M) spacer layer disposed over the first NM spacer layer and a second NM spacer layer disposed over the M layer. The M layer is a magnetically continuous amorphous layer, which provides a good template for the reference layer.
US10297739B1

A braiding element and a method for operating the braiding device, a structure of braiding devices as well as an array of braiding devices for controlling parafermions for quantum computing may be provided. The braiding device comprises a first wire layer and a second wire layer, a superconductor layer arranged in vertical sandwich-style between the first and the second wire layer such that a device structure is built and a plurality cascades of gate electrodes such that one of the plurality of cascades of gate electrodes is arranged at the first quantum wire layer and at the second quantum wire layer of each of the three legs.
US10297735B2

Embodiments relate to a light emitting device package having an improved luminous flux, and the light emitting device package includes a body including a cavity, a first lead frame and a second lead frame exposed on a bottom surface of the cavity and separate from each other by an electrode separating member, a first light emitting device disposed on the first lead frame, a second light emitting device disposed on the second lead frame, and a Zener diode disposed on the first lead frame or the second lead frame, and disposed more closely to the electrode separating member than to the first light emitting device and the second light emitting device. Here, the electrode separating member diagonally separate the first lead frame and the second lead frame along a width direction of the body.
US10297734B2

An LED module is provided with a lead, an LED chip mounted on the obverse surface of the lead, and a case covering at least a part of the lead. The case has a side wall surrounding the LED chip. The lead includes a thin extension whose bottom surface is spaced apart upward from the reverse surface of the lead in the thickness direction of the lead. The case is provided with a holding portion that covers at least a part of each of the top surface and the bottom surface of the first thin extension.
US10297731B2

Light emitting diode (LED) constructions comprise an LED having a pair of electrical contacts along a bottom surface. A lens is disposed over the LED and covers a portion of the LED bottom surface. A pair of electrical terminals is connected with respective LED contacts, are sized larger than the contacts, and connect with the lens material along the LED bottom surface. A wavelength converting material may be interposed between the LED and the lens. LED constructions may comprise a number of LEDs, where the light emitted by each LED differs from one another by about 2.5 nm or less. LED constructions are made by attaching 2 or more LEDs to a common wafer by adhesive layer, forming a lens on a wafer level over each LED to provide a rigid structure, removing the common wafer, forming the electrical contacts on a wafer level, and then separating the LEDs.
US10297730B2

An LED device, a method for manufacturing an LED device, and an LED display module are provided. The LED device includes an LED bracket, an LED chip and an encapsulation sealant. The LED bracket includes a metal bracket and a cup cover encasing the metal bracket. The cup cover includes a reflective cup having a cavity. The LED chip is fixed in the cavity of the reflective cup. The cavity of the reflective cup is filled with the encapsulation sealant. The encapsulation sealant includes an under sealant and a surface sealant. The under sealant covers the LED chip, and the surface sealant covers the under sealant. The under sealant is a transparent layer. The surface sealant is a matte layer.
US10297723B2

A light-emitting device comprises a semiconductor stack comprising a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a first pad on the semiconductor stack; a second pad on the semiconductor stack, wherein the first pad and the second pad are separated from each other with a distance, which define a region between the first pad and the second pad on the semiconductor stack; and multiple vias penetrating the active layer to expose the first semiconductor layer, wherein the first pad and the second pad are formed on regions other than the multiple vias.
US10297714B1

Light-emitting devices having a multiple quantum well (MQW) pin diode structure and methods of making and using the devices are provided. The light-emitting devices include: a tunneling heterojunction as a hole injector; an n-type contact; and a light-emitting active region disposed between the tunneling heterojunction and the n-type contact. The tunneling heterojunction facilitates interband tunneling hole injection under bias, whereby electrons in the valence band of a p-type group III-nitride semiconductor tunnel directly into the conduction band of the n-type doped semiconductor, resulting in the generation of holes in the p-type group III-nitride.
US10297708B1

A photodetector includes a detector material having an upper layer, a lower layer, and at least one sidewall. Also included as part of the photodetector are a first contact electrically coupled to the detector material through the upper layer and a second contact electrically coupled to the detector material through the lower layer. Diffused into the sidewall by a passivation process is a dopant material operable to electrically isolate the first contact from the second contact via the sidewall. The dopant material is provided by a passivation layer deposited on the sidewall.
US10297707B1

A photovoltaic structure for absorption from the solar spectrum, includes a light transmitting substrate layer, a transparent electrode layer on the substrate layer, a direct band-gap, wide band-gap, nanocrystalline or microcrystalline, think film semiconducting first layer on the transparent electrode layer, a second think film layer comprising a narrow band-gap semiconductor on the first layer a second electrode layer on the second think film layer, and a protective layer on the second electrode layer. The structure has a hetero-structure at the boundary between the wide-band-gap layer and the second thin film layer. The second layer can be chalcogenide salt having an average thickness of 0.4 to 1.2 μm, and preferably an average thickness of 0.5 to 0.6 μm. The chalcogenide salt layer is a lead chalcogenide, such as a nanocrystaline lead sulfide, nanocrystalline lead selenide, or a nanocrystalline lead telluride.
US10297706B2

A photoconductive switch is disclosed having a substrate, an electrode formed on the substrate, and a dielectric formed adjacent to the substrate and the electrode. The dielectric, the electrode and the substrate each have a portion cooperatively defining an interface area. The interface area of the dielectric has a doping making the interface area of the dielectric electrically conductive to suppress a charge collection at the interface area when the photoconductive switch is electrically energized through an input signal irradiating the electrode. In one embodiment the electrode may have a curvilinear or spherical shape, and the substrate may have a boundary edge surface which extends normal to the surface of the electrode, and with the dielectric having an edge surface that matches the contour of the substrate edge surface.
US10297703B2

A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
US10297701B2

An optical switching device includes: an optical absorbing layer having a first superlattice structure and responding to an incident light; an excitation layer having a second superlattice structure and producing an electron by thermal excitation; and a barrier layer having a third superlattice structure, the optical absorbing layer and the barrier layer enabling a first band offset and a second band offset to form a well in a conduction band of the second superlattice structure of the excitation layer with reference to a conduction band of the first superlattice structure of the optical absorbing layer and a conduction band of the third superlattice structure of the barrier layer, respectively.
US10297700B1

Radiation detecting and sensing systems using graphene and methods of making the same are provided; including a substrate, a single or multiple layers of graphene nanoribbons, first and second conducting interconnects each in electrical communication with the graphene layers. Graphene layers are tuned to increase the temperature coefficient of resistance, increasing sensitivity to IR radiation. Absorption over a wide wavelength range (200 nm to 1 mm) is possible based on the three alternative devices structures described within. Devices can variously include (a) a microbolometer based graphene film where the TCR of the layer is enhanced with selected functionalization molecules, (b) graphene layers with a source and drain metal interconnect and a deposited metal of SiO2 gate which modulates the current flow across the phototransistor detector, and/or (c) tuned graphene layers layered on top of each other where a p-type layer and a n-type layer is created using a combination of oxidation and doping.
US10297697B1

A system for imaging at least one source of radiation with a mask and a plurality of detectors. The mask is characterized by a base pattern and configured to selectively transmit or block the radiation striking the mask based in part on the base pattern. The mask includes a plurality of tiles each repeating the base pattern. The number of the detectors is N and each of the tiles is divided into N respective portions. The plurality of detectors is positioned in a spaced apart configuration such that each of the plurality of detectors captures the radiation passing through different ones of the N respective portions of the plurality of tiles. The different ones of the N respective portions combine to form the base pattern.
US10297684B2

A field effect device includes a semiconductor body separating a source and a drain, both source and drain coupled to the semiconductor body. An insulated control gate is located over the semiconductor body between the source and drain and configured to control a conductive channel extending between the source and drain. First and second doped regions such as highly-doped regions are adjacent to the source. The first or second doped region may be a cathode short region electrically coupled to the source. The cathode short region may be used in a bidirectional power MOSFET.
US10297675B1

Methods of forming a field-effect transistor and structures for a field-effect transistor. A gate structure is formed that overlaps with a channel region in a semiconductor fin. The semiconductor fin is etched with a first etching process to form a first cavity extending into the semiconductor fin adjacent to the channel region. The semiconductor fin is etched with a second etching process to form a second cavity that is volumetrically smaller than the first cavity and that adjoins the first cavity.
US10297673B2

Methods of forming a semiconductor device are provided. The methods may include forming a plurality of fin-shaped channels on a substrate, forming a gate structure crossing over the plurality of fin-shaped channels and forming a source/drain adjacent a side of the gate structure. The source/drain may cross over the plurality of fin-shaped channels and may be electrically connected to the plurality of fin-shaped channels. The methods may also include forming a metallic layer on an upper surface of the source/drain and forming a conductive contact on the metallic layer opposite the source/drain. The conductive contact may have a first length in a longitudinal direction of the metallic layer that is less than a second length of the metallic layer in the longitudinal direction of the metallic layer.
US10297664B2

A method of forming nanosheet and nanowire transistors includes the formation of alternating epitaxial layers of silicon germanium (SiGe) and silicon (Si), where the germanium content within respective layers of the silicon germanium is systemically varied in order to mediate the selective etching of these layers. The germanium content can be controlled such that voids created by removal of the silicon germanium have uniform dimensions, and the backfilling of such voids with gate dielectric and gate conductor layers proximate to silicon nanosheets or nanowires results in devices having a uniform effective gate length.
US10297662B2

The present disclosure relates to a dielectrically isolated semiconductor device and a method for manufacturing the same. The dielectrically isolated semiconductor device includes a semiconductor substrate, a first semiconductor layer above the semiconductor substrate, a second semiconductor layer above the first semiconductor layer, a semiconductor island in the second semiconductor layer, and a first dielectric isolation layer surrounding a bottom and sidewalls of the semiconductor island. The first dielectric isolation layer includes a first portion which is formed from a portion of the first semiconductor layer and extending along the bottom of the semiconductor island, and a second portion which is formed from a portion of the second semiconductor layer and extending along the sidewalls of the semiconductor island. The dielectrically isolated semiconductor devices needs no an SOI wafer and reduces manufacturing cost.
US10297659B2

Semiconductor structures including a plurality of conductive structures having a dielectric material therebetween are disclosed. The thickness of the dielectric material spacing apart the conductive structures may be adjusted to provide optimization of capacitance and voltage threshold. The semiconductor structures may be used as capacitors, for example, in memory devices. Various methods may be used to form such semiconductor structures and capacitors including such semiconductor structures. Memory devices including such capacitors are also disclosed.
US10297658B2

A system that incorporates teachings of the subject disclosure may include, for example, a thin film capacitor having a substrate, a first electrode layer on the substrate, a first dielectric layer on the first electrode layer where the first dielectric layer has a columnar-oriented grain structure, a group of second dielectric layers stacked on the first dielectric layer where each of the group of second dielectric layers has a randomly-oriented grain structure, and a second electrode layer on the group of second dielectric layers. Other embodiments are disclosed.
US10297644B2

An OLED display device includes a substrate including red, green, and blue pixel areas, a first electrode at each of the red pixel area, the green pixel area, and the blue pixel area on the substrate, a hole transport layer on the first electrode, a light emission portion on the hole transport layer, the light emission portion including a red light emitting layer at the red pixel area, a green light emitting layer at the green pixel area, and a blue light emitting layer at the blue pixel area, a first charge generation layer and a first resonance auxiliary layer between the hole transport layer and the blue light emitting layer, a second resonance auxiliary layer between the hole transport layer and the red light emitting layer, an electron transport layer on the light emission portion, and a second electrode on the electron transport layer.
US10297643B2

Disclosed is an organic light emitting display device. The organic light emitting display device includes a substrate in which at least three pixel areas are defined, a first electrode and a hole transporting layer formed on the substrate, a light-emitting material layer formed on the hole transporting layer in each of the pixel areas, and an electron transporting layer and a second electrode formed on the light-emitting material layer. An optical assistant transporting layer is formed on the light-emitting material layer at a position corresponding to one of the pixel areas, and formed of an electron transporting material. Accordingly, provided can be a high-resolution organic light emitting display device that solves an imbalance of electric charges and has an excellent light output efficiency and an enhanced service life.
US10297642B2

A semiconductor device including a data storage pattern is provided. The semiconductor device includes a first conductive line disposed on a substrate and extending in a first direction, a second conductive line disposed on the first conductive line and extending in a second direction, and a first data storage structure and a first selector structure disposed between the first conductive line and the second conductive line and connected in series. The first data storage structure includes a first lower data storage electrode, a first data storage pattern, and a first upper data storage electrode. The first lower data storage electrode includes a first portion facing the first upper data storage electrode and vertically aligned with the first upper data storage electrode. The first data storage pattern includes a first side surface and a second side surface facing each other. The first upper data storage electrode and the first portion of the first lower data storage electrode are disposed to be closer to the first side surface of the first data storage pattern than to the second side surface of the first data storage pattern.
US10297640B2

Some embodiments include a memory device having first structures arranged in a first direction and second structures arranged in a second direction. At least one structure among the first and second structures includes a semiconductor material. The second structures contact the first structures at contact locations. A region at each of the contact locations is configured as memory element to store information based on a resistance of the region. The structures can include nanowires. Other embodiments are described.
US10297637B2

The present invention provides a micro LED array substrate encapsulation structure and an encapsulation method thereof. The micro LED array substrate encapsulation structure of the present invention includes a base plate, a micro LED array, and a photoresist protection layer. The micro LED array includes a plurality of micro LEDs arranged in an array. The photoresist protection layer is formed with a plurality of vias at locations corresponding to the plurality of micro LEDs. The plurality of micro LEDs are respectively located in the plurality of vias. Each of the vias is filled therein with a UV resin microlens that has an upper surface in a bulging form and covers the micro LED in the corresponding one of the vias. The micro LEDs and driving substrates located thereunder can be protected and an effect of light emission of the micro LED array substrate can be improved.
US10297636B2

A method of fabricating an image sensor includes implanting a first dopant in a substrate, removing a portion of the substrate to define a protrusion, forming a conductive feature over the protrusion, and implanting a second dopant in the protrusion. The removal of the portion of the substrate defines a first surface surrounding the protrusion. The second dopant has a same conductivity type as the first dopant.
US10297620B2

The disclosed display device includes: a substrate; a gate electrode disposed on the substrate; a first insulating layer disposed on the gate electrode; a metal layer disposed on the first insulating layer and including an opening; a second insulating layer disposed on the metal layer; and a connecting member electrically connecting to the gate electrode through a contact via penetrating the first insulating layer and the second insulating layer. A first outline included in a first projection of the gate electrode crosses a third outline included in a third projection of the connecting member at first and second intersections, a second outline included in a second projection of the metal layer crosses the third outline at third and fourth intersections, and a first distance between the first and second intersections is less than a second distance between the third and fourth intersections.
US10297614B2

The capacitance between gate structures and source/drain contacts of FinFET devices is reduced by the incorporation of inner spacers in the top portions of the gate structures. A replacement metal gate process used in the fabrication of such devices includes formation of the inner spacers following partial removal of dummy gate material. The remaining dummy gate material is then removed and replaced with gate dielectric and metal gate material.
US10297610B2

An array of memory stack structures extends through an alternating stack of insulating layers and electrically conductive layers over a substrate. An array of drain select level assemblies including cylindrical electrode portions is formed over the alternating stack with the same periodicity as the array of memory stack structures. A drain select level isolation strip including dielectric materials can be formed between a neighboring pair of drain select level assemblies employing the drain select level assemblies as a self-aligning template. Alternatively, cylindrical electrode portions can be formed around an upper portion of each memory stack structure. Strip electrode portions are formed on the cylindrical electrode portions after formation of the drain select level isolation strip.
US10297607B2

A non-volatile memory having discrete isolation structures and SONOS (Silicon Oxide Nitride Oxide Silicon) memory cells, a method of operating the same, and a method of manufacturing the same are introduced. Every isolation structure on a semiconductor substrate having an array region has a plurality of gaps so as to form discrete isolation structures and thereby implant source lines in the gaps of the semiconductor substrate. Since the source lines are not severed by the isolation structures, the required quantity of barrier pins not connected to the source line is greatly reduced, thereby reducing the space required for the barrier pins in the non-volatile memory.
US10297605B2

Systems, methods, and techniques described here provide for a hybrid electrically erasable programmable read-only memory (EEPROM) that functions as both a single polysilicon EEPROM and a double polysilicon EEPROM. The two-in-one hybrid EEPROM can be programmed and/or erased as a single polysilicon EEPROM and/or as a double polysilicon EEPROM. The hybrid EEPROM memory cell includes a programmable capacitor disposed on a substrate. The programmable capacitor includes a floating gate forming a first polysilicon layer, an oxide-nitride-oxide (ONO) layer having disposed over a first surface of the floating gate, and a control gate forming a second polysilicon layer with the control gate formed over a first surface of the ONO layer to form a hybrid EEPROM having a single polysilicon layer and a double polysilicon EEPROM. The single polysilicon EEPROM includes the first polysilicon layer and the double polysilicon EEPROM includes the first and second polysilicon layers.
US10297604B2

Some embodiments of the present disclosure relate to method of forming a memory device. In some embodiments, the method may be performed by forming a floating gate over a first dielectric on a substrate. A control gate is formed over the floating gate and first and second spacers are formed along sidewalls of the control gate. The first and second spacers extend past outer edges of an upper surface of the floating gate. An etching process is performed on the first and second spacers to remove a portion of the first and second spacers that extends past the outer edges of the upper surface of the floating gate along an interface between the first and second spacers and the floating gate.
US10297593B2

According to one embodiment, a semiconductor device includes a first region having an insulated gate bipolar transistor and a second region having a diode. The first region and the second region are formed in a same chip. A breakdown voltage of the second region is lower than a breakdown voltage of the first region.
US10297583B2

An embodiment of the present invention describes a method for forming a doped region at a first major surface of a semiconductor substrate where the first doped region being part of a first semiconductor device. The method includes forming an opening from the first major surface into the semiconductor substrate and attaching a semiconductor die to the semiconductor substrate at the opening. The semiconductor die includes a second semiconductor device, which is a different type of semiconductor device than the first semiconductor device. The method further includes forming a chip isolation region on sidewalls of the opening and surrounding the second semiconductor device, and singulating the semiconductor substrate.
US10297581B2

Display panels and methods of manufacture are described for down converting a peak emission wavelength of a pump LED within a subpixel with a quantum dot layer. In some embodiments, pump LEDs with a peak emission wavelength below 500 nm, such as between 340 nm and 420 nm are used. QD layers in accordance with embodiments can be integrated into a variety of display panel structures including a wavelength conversion cover arrangement, QD patch arrangement, or QD layers patterned on the display substrate.
US10297579B2

A structure includes a first package and a second package. The second package is coupled to the first package by one or more connectors. Epoxy flux residue is disposed around the connectors and in contact with the connectors. A method includes providing a first package having first connector pads and providing a second package having corresponding second connector pads. Solder paste is printed on each of the first connector pads. Epoxy flux is printed on each of the solder paste. The first and second connector pads are aligned and the packages are pressed together. The solder paste is reflowed to connect the first connector pads to the second connector pads while leaving an epoxy flux residue around each of the connections.
US10297576B2

A packaged module for a radio frequency wireless device has a substrate supporting a first wireless device component and a second wireless device component where the first wireless device component is between the second wireless device component and a first surface of the substrate. At least a first overhanging portion of the second wireless device component extends beyond at least a portion of the periphery of the first wireless device component.
US10297574B2

There is provided a semiconductor device assembly with an interposer and method of manufacturing the same. More specifically, in one embodiment, there is provided a semiconductor device assembly comprising a semiconductor substrate, at least one semiconductor die attached to the semiconductor substrate, an interposer disposed on the semiconductor die, and a controller attached to the interposer. There is also provided a method of manufacturing comprising forming a first subassembly by coupling a substrate and a semiconductor die, and forming second subassembly by attaching a controller to an interposer, and coupling the first subassembly to the second subassembly.
US10297573B2

A three-dimensional package structure, comprising: a substrate; a first plurality of discrete electronic components disposed over the bottom surface of the substrate, wherein a first insulating layer is disposed over the bottom surface of the substrate to encapsulate the first plurality of discrete electronic components, wherein at least one second insulating layer is disposed over the first insulating layer, wherein a plurality of surface-mount pads are disposed on the bottom surface of the at least one second insulating layer and electrically connected to at least one via disposed in the at least one second insulating layer.
US10297566B2

A semiconductor structure includes a substrate, a chip, a plurality of conductive bumps, a flexible printed circuit (FPC) board and a plurality of circuit patterns. The chip is disposed on the substrate and includes a plurality of pads. The conductive bumps are disposed on the pads respectively. The FPC board is connected between the substrate and the chip, and the conductive bumps penetrate through an end of the FPC board. The circuit patterns are disposed on the FPC board and electrically connected to the conductive bumps and the substrate.
US10297565B2

An electronic device made from the method of providing a donor substrate comprising an array of metallic interconnects, using a laser system to prepare the metallic interconnects, forming shaped metallic interconnects, laser bending the shaped metallic interconnects; and transferring the shaped metallic interconnects onto a receiving substrate or device.
US10297554B2

A semiconductor package including a marking film and a method of fabricating the same are provided wherein a marking film including a thermoreactive layer may be applied to a molding layer to protect a semiconductor chip under the molding layer and to efficiently perform a marking process. The thickness of the molding layer may thereby be reduced so the entire thickness of the semiconductor package may be reduced. Also, it is possible to prevent warpage of the semiconductor package through the marking film, provide the surface of the semiconductor package with gloss and freely adjust the color of the surface of the semiconductor package.
US10297550B2

A device includes an interposer, which includes a substrate having a top surface. An interconnect structure is formed over the top surface of the substrate, wherein the interconnect structure includes at least one dielectric layer, and metal features in the at least one dielectric layer. A plurality of through-substrate vias (TSVs) is in the substrate and electrically coupled to the interconnect structure. A first die is over and bonded onto the interposer. A second die is bonded onto the interposer, wherein the second die is under the interconnect structure.
US10297546B2

Interconnect structures for a security application and methods of forming an interconnect structure for a security application. A sacrificial masking layer is formed that includes a plurality of particles arranged with a random distribution. An etch mask is formed using the sacrificial masking layer. A hardmask is etched while masked by the etch mask to define a plurality of mask features arranged with the random distribution. A dielectric layer is etched while masked by the hardmask to form a plurality of openings in the dielectric layer that are arranged at the locations of the mask features. The openings in the dielectric layer are filled with a conductor to define a plurality of conductive features.
US10297544B2

Provided is an integrated fan-out package including a die, an insulating encapsulation, a redistribution circuit structure, a conductive terminal, and a barrier layer. The die is encapsulated by the insulating encapsulation. The redistribution circuit structure includes a redistribution conductive layer. The redistribution conductive layer is disposed in the insulating encapsulation and extending from a first surface of the insulating encapsulation to a second surface of the insulating encapsulation. The conductive terminal is disposed over the second surface of the insulating encapsulation. The barrier layer is sandwiched between the redistribution conductive layer and the conductive terminal. A material of the barrier layer is different from a material of the redistribution conductive layer and a material of the conductive terminal. A method of fabricating the integrated fan-out package is also provided.
US10297543B2

A vertical semiconductor device including a plurality of interlayer insulating layer patterns spaced apart from each other on a substrate and stacked in a vertical direction; a plurality of conductive layer patterns arranged between the interlayer insulating layer patterns and each having a rounded end, wherein at least one of the conductive layer patterns is configured to extend from one side wall of each of the interlayer insulating layer patterns and include a pad region, and the pad region includes a raised pad portion configured to protrude from a surface of the at least one conductive layer pattern; an upper interlayer insulating layer to cover the interlayer insulating layer patterns and the conductive layer patterns; and a contact plug configured to penetrate the upper interlayer insulating layer to be in contact with the raised pad portion of the at least one conductive layer pattern.
US10297542B2

A package structure including a capacitor mounted within a cavity in the package substrate is disclosed. The package structure may additionally include a die mounted to a die side surface of the package substrate, and the opposing land side surface of the package substrate may be mounted to a printed circuit board (PCB). The capacitor may be mounted within a cavity formed in the die side surface of the package substrate or the land side surface of the package substrate. Mounting a capacitor within a cavity may reduce the form factor of the package. The die may be mounted within a cavity formed in the die side surface of the package substrate. Solder balls connecting the package to the PCB may be mounted within one or more cavities formed in one or both of the package substrate and the PCB.
US10297538B2

A signal transmission apparatus includes: a first lead frame; a second lead frame spaced from the first lead frame; a primary semiconductor chip electrically connected to the first lead frame; a secondary semiconductor chip electrically connected to the second lead frame; and a signal isolator through which a signal is isolatedly transmitted from the primary semiconductor chip to the secondary semiconductor chip, the signal isolator having a first main surface that is bonded to both the first lead frame and the second lead frame.
US10297534B2

A single chip integrated circuit (IC) package includes a die pad, and a spacer ring on the die pad defining a solder receiving area. A solder body is on the die pad within the solder receiving area. An IC die is on the spacer ring and is secured to the die pad by the solder body within the solder receiving area. Encapsulating material surrounds the die pad, spacer ring, and IC die. For a multi-chip IC package, a dam structure is on the die pad and defines multiple solder receiving areas. A respective solder body is on the die pad within a respective solder receiving area. An IC die is within each respective solder receiving area and is held in place by a corresponding solder body. Encapsulating material surrounds the die pad, dam structure, and plurality of IC die.
US10297533B2

A semiconductor device is provided, including: a bottom portion having a pad formed of a conductive material; a lid portion covering at least a part of the bottom portion; and a first terminal portion and a second terminal portion which are provided in parallel with each other, are fixed to the lid portion, and each contact a corresponding pad, wherein: the first terminal portion is provided with a first plate-shaped portion; the second terminal portion is provided with a second plate-shaped portion; and each of the first plate-shaped portion and the second plate-shaped portion has a principal surface in a direction facing the pad and is flexible in a direction toward the pad.
US10297529B2

The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the module substrate, a mold compound component, a thermally conductive film, and a thermally enhanced mold compound component. The mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally conductive film resides over at least the upper surface of the thinned flip chip at the bottom of the cavity. The thermally enhanced mold compound component resides over at least a portion of the thermally conductive film to fill the cavity.
US10297519B2

A PoP semiconductor device has a top semiconductor package disposed over a bottom semiconductor package. The top semiconductor package has a substrate and a first semiconductor die disposed over the substrate. First and second encapsulants are deposited over the first semiconductor die and substrate. A first build-up interconnect structure is formed over the substrate after depositing the second encapsulant. The top package is disposed over the bottom package. The bottom package has a second semiconductor die and modular interconnect units disposed around the second semiconductor die. A second build-up interconnect structure is formed over the second semiconductor die and modular interconnect unit. The modular interconnect units include a plurality of conductive vias and a plurality of contact pads electrically connected to the conductive vias. The I/O pattern of the build-up interconnect structure on the top semiconductor package is designed to coincide with the I/O pattern of the modular interconnect units.
US10297518B2

A semiconductor device includes a semiconductor die. An encapsulant is formed around the semiconductor die. A build-up interconnect structure is formed over a first surface of the semiconductor die and encapsulant. A first supporting layer is formed over a second surface of the semiconductor die as a supporting substrate or silicon wafer disposed opposite the build-up interconnect structure. A second supporting layer is formed over the first supporting layer and includes a fiber enhanced polymer composite material comprising a footprint including an area greater than or equal to an area of a footprint of the semiconductor die. The semiconductor die comprises a thickness less than 450 micrometers (μm). The thickness of the semiconductor die is at least 1 μm less than a difference between a total thickness of the semiconductor device and a thickness of the build-up interconnect structure and the second supporting layer.
US10297513B1

The present invention provides stacked VFET devices. In one aspect, a method of forming a stacked VFET device includes: patterning a fin(s) in a wafer having a vertical fin channel of a VFET1 separated from a vertical fin channel of a VFET2 by an insulator; forming a bottom source and drain of the VFET1 below the vertical fin channel of the VFET1; forming a gate of the VFET1 alongside the vertical fin channel of the VFET1; forming a gate of the VFET2 alongside the vertical fin channel of the VFET2; forming a top source and drain of the VFET1 above the vertical fin channel of the VFET1; forming a bottom source and drain of the VFET2 below the vertical fin channel of the VFET2; and forming a top source and drain of the VFET2 above the vertical fin channel of the VFET2. A stacked VFET device is also provided.
US10297507B2

A vertical FET structure includes a bottom source-drain region disposed on a substrate of the first type; a recessed first heterostructure layer disposed on the bottom source-drain region; a first fin disposed on the bottom source-drain region; a dielectric inner spacer disposed on the recessed first heterostructure; an outer spacer disposed on the inner spacer; a high-k and metal gate layer disposed on the outer spacer, the inner spacer, and the channel layer; an interlayer dielectric oxide disposed between the first fin and the outer spacer; a recessed second heterostructure layer disposed on top of the substrate of the first type and high-k and metal gate layer; a dielectric inner spacer disposed on the recessed second heterostructure layer; and a top source-drain region layer disposed on the dielectric inner spacer and recessed second heterostructure layer resulting in the vertical FET. A method for forming the vertical FET is also provided.
US10297505B2

A method of manufacturing a semiconductor device includes forming a first insulating film over a first fin structure and a second insulating film over a second fin structure, coating a protective layer over the second insulating film, removing the first insulating film to expose a portion of the first fin structure, and forming a first oxide film over the exposed portion of the first fin structure using a non-aqueous solvent-based chemical.
US10297498B2

A method for preparing a ceramic package substrate with a copper-plated dam involves making a circuit layer on a ceramic base by performing thin film metallization, dry film application, exposure, development, copper plating, and evening, and then forming copper-plated dams that circle individual circuits by repeatedly applying dry film application, exposure, development, and electroplating for thickening, so as to obtain the ceramic package substrate with the copper-plated dam. Circuits made using the method feature for high dimensional precision, high line resolution, and high surface evenness.
US10297495B2

A method of manufacturing a semiconductor device includes forming a first conductive structure on a substrate, forming an insulation layer on a sidewall of the first conductive structure, forming a second conductive structure a distance apart from the first conductive structure with the insulation layer therebetween, first removing a portion of the insulation layer by performing a first dry cleaning operation, second removing a reactant product used in the first dry cleaning operation or a first byproduct generated as a result of the first dry cleaning operation by performing a first purge operation, and third removing at least a portion of the remaining insulation layer by performing a second dry cleaning operation to form an air gap between the first and second conductive structures.
US10297493B2

The present disclosure includes semiconductor structures and methods of forming semiconductor structures for trench isolation interfaces. An example semiconductor structure includes a semiconductor substrate having a shallow trench isolation (STI) structure with a trench formed therein. An material in the trench forms a charged interface by interaction with the semiconductor substrate of the STI structure. The formed charged interface raises a parasitic threshold of the STI structure.
US10297489B2

A plasma processing method includes a mounting process of mounting a holding sheet holding a substrate in a stage provided in a plasma processing apparatus, and a fixing process of fixing the holding sheet to the stage. The plasma processing method further includes a determining process of determining whether or not a contact state of the holding sheet with the stage is good or bad after the fixing process, and a plasma etching process of etching the substrate by exposing a surface of the substrate to plasma on the stage, in a case in which the contact state is determined to be good in the determining process.
US10297481B2

A magnetic annealing apparatus is provided which performs a magnetic annealing on workpieces held in a workpiece boat by using a horizontal superconducting magnet as a magnetic field generating unit. The magnetic annealing apparatus includes a carrier configured to accommodate the workpieces before the magnetic annealing process; and a workpiece conveyance mechanism configured to convey the workpieces held in the carrier to the workpiece boat. The workpiece conveyance mechanism is capable of holding the workpieces in either a horizontal state or in a vertical state.
US10297476B2

A supply flow passage branches into a plurality of upstream flow passages. A plurality of discharge ports are respectively disposed at a plurality of positions differing in distance from a rotational axis of a substrate. A return flow passage is connected to the upstream flow passage. A downstream heater heats liquid flowing through the upstream flow passage. A downstream switching unit supplies the liquid, supplied to the plurality of upstream flow passages from the supply flow passage, to one of the plurality of discharge ports and the return flow passage, selectively.
US10297466B2

Provided are a semiconductor device including an interposer having a relatively thin thickness without a through silicon via and a method of manufacturing the same. The method of manufacturing a semiconductor device includes forming an interposer including a redistribution layer and a dielectric layer on a dummy substrate, connecting a semiconductor die to the redistribution layer facing an upper portion of the interposer, encapsulating the semiconductor die by using an encapsulation, removing the dummy substrate from the interposer, and connecting a bump to the redistribution layer facing a lower portion of the interposer.
US10297457B2

Apparatus, systems, and methods for controlling azimuthal uniformity of an etch process in a plasma processing chamber are provided. In one embodiment, a plasma processing apparatus can include a plasma processing chamber and an RF cage disposed above the plasma processing chamber. A dielectric window can separate the plasma processing chamber and the RF cage. The apparatus can include a plasma generating coil disposed above the dielectric window. The plasma generating coil can be operable to generate an inductively coupled plasma in the plasma processing chamber when energized. The apparatus further includes a conductive surface disposed within the RF cage proximate to at least a portion of the plasma generating coil. The conductive surface is arranged to generate an azimuthally variable inductive coupling between the conductive surface and the plasma generating coil when the plasma generating coil is energized.
US10297456B2

A dielectric structure for a nitride semiconductor device and a method of forming the same. A semiconductor device includes at least one semiconductor layer. The at least one semiconductor layer includes a gallium nitride semiconductor material. The semiconductor device also includes an oxidized layer disposed over the at least one semiconductor layer. The oxidized layer includes an oxidized form of the gallium nitride semiconductor of the at least one semiconductor layer. A silicon oxide layer is disposed over the oxidized layer. A gate is disposed over the silicon oxide layer.
US10297442B2

Provided are methods and apparatuses for depositing a graded or multi-layered silicon carbide film using remote plasma. A graded or multi-layered silicon carbide film can be formed under process conditions that provide one or more organosilicon precursors onto a substrate in a reaction chamber. Radicals of source gas in a substantially low energy state, such as radicals of hydrogen in the ground state, are provided from a remote plasma source into reaction chamber. In addition, co-reactant gas is flowed towards the reaction chamber. In some implementations, radicals of the co-reactant gas are provided from the remote plasma source into the reaction chamber. A flow rate of the co-reactant gas can be changed over time, incrementally or gradually, to form a multi-layered silicon carbide film or a graded silicon carbide film having a composition gradient from a first surface to a second surface of the graded silicon carbide film.
US10297439B2

A film forming method of depositing a thin film of a reaction product generated by a reaction between a raw material gas and a reactive gas on a substrate by alternately supplying the raw material gas and the reactive gas to the substrate accommodated in a processing container. The film forming method includes: storing the raw material gas in a reservoir; adsorbing the raw material gas on the substrate by supplying the raw material gas stored in the reservoir to the substrate; and reacting the raw material gas and the reactive gas with each other by supplying the reactive gas to the substrate on which the raw material gas is adsorbed to generate the reaction product; wherein the storing, the adsorbing, and the reacting are repeated a plurality of times, while a condition for the storing is changed at least once.
US10297436B2

The present invention relates to a method and device for measuring m/z ratios of ions in ion cyclotron resonance (ICR) mass spectrometry. The described ion traps for ICR mass spectrometry are distinct from the previous configurations by having one or many narrow aperture (flat) detection electrodes that could be moved radially inward the ICR trap, for example on the plane where radiofrequency excitation potential is minimal, closer to the post-excitation ion trajectories.
US10297432B2

Systems and methods are provided to perform sequential windowed acquisition of mass spectrometry data. A mass range and a mass window width parameter are received for a sample. A plurality of ions from the sample that are within the mass range are collected in an ion trap of a mass spectrometer. Two or more mass adjacent or overlapping windows are calculated to span the mass range using the mass window width parameter. Ions within each mass window are ejected from the ion trap. A mass spectrum is then detected from the ejected ions of the each mass window with a mass analyzer of the mass spectrometer, producing a collection of mass spectra for the mass range. The two or more mass windows can all have the same width, can all have different widths, or can have at least two mass windows with different widths.
US10297427B2

The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a cover ring disposed above the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
US10297425B2

A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
US10297423B2

A plasma generation apparatus according to the present invention includes an electrode cell and a housing that encloses an electrode cell. The electrode cell includes a first electrode, a second electrode facing the first electrode with interposition of a discharge space therebetween, and dielectrics arranged on main surfaces of the electrodes. The plasma generation apparatus further includes a pipe passage configured to directly supply a source gas from the outside of the housing to the discharge space without being connected to a space within the housing where the electrode cell is not arranged.
US10297421B1

Embodiments are directed to forming reentrant multi-layer micro-scale or millimeter scale three dimensional structures, parts, components, or devices where each layer is formed from a plurality of deposited materials and more specifically where each layer is formed from at least one metal structural material and at least one organic sacrificial material (e.g. polymer) that are co-planarized and a portion of the sacrificial material located on a plurality of layers is removed after formation of the plurality of layers via one or more plasma etching operations.
US10297419B2

The present invention has an object to provide a scanning electron microscope which suppresses a potential gradient produced by preliminary charge without changing lens conditions of an electron microscope. As an aspect to achieve the above object, there is proposed a scanning electron microscope in which a scanning deflector is controlled so that a second beam is scanned to detect electrons released from a sample after scanning a first beam on the sample to charge the surface of the sample and the first beam is scanned so that charge density in a surrounding part within a scanned area by the first beam is increased relatively as compared with a center part within the scanned area by the first beam.
US10297412B2

A negative ion source includes a plasma chamber, a microwave source, a negative ion converter, a magnetic filter and a beam formation mechanism. The plasma chamber contains gas to be ionized. The microwave source transmits microwaves to the plasma chamber to ionize the gas into atomic species including hyperthermal neutral atoms. The negative ion converter converts the hyperthermal neutral atoms to negative ions. The magnetic filter reduces a temperature of an electron density provided between the plasma chamber and the negative ion converter. The beam formation mechanism extract the negative ions.
US10297402B2

The present invention discloses a magnetic pulse inducted transfer-type DC circuit breaker. The DC circuit breaker comprises a main current circuit and a transfer current circuit, the main current circuit comprising a combination of a fast mechanical switch or a mechanical switch with a power electronic device; the transfer current circuit comprises an arrester and a mutual inductor. The voltage generated through a mutual inductor may directly transfer current to the arrestor, thereby eliminating a process of transfer of the current to the capacitor or a power electronic device; it has a high current limiting or breaking speed, with a stability far superior to traditional technologies. The isolation between the capacitance charging unit and the DC system significantly reduces the voltage level and size of the charging unit, and enhances action reliability. The power semiconductor devices or trigger gaps are used at the primary side of the mutual inductor of the transfer current circuit form a bridge circuit, thereby realizing bidirectional current transfer; the bridge circuit is voltage-withstanding and low-cost.
US10297400B2

A trip cam assembly is for a multi-pole electrical switching apparatus. The trip cam assembly includes a first trip cam, a second trip cam, and an interconnect member coupled to the first trip cam and the second trip cam.
US10297398B2

A porous carbon material for electrodes of energy storage devices comprising: a porous carbon material; 0.5 to 5 parts by mass of an insulating material having a boiling point of 150° C. or more based on 100 parts by mass of the porous carbon material; and 0.25 to 15 parts by mass of a conductive additive based on 100 parts by mass of the insulating material, wherein the insulating material and the conductive additive are carried on the porous carbon material in combination, and the porous carbon material has a BET specific surface area of 1300 to 2050 m2/g.
US10297391B2

A composite electronic component includes a substrate with a first main surface and a side end surface, a first electronic component including external electrodes and mounted on the first main surface of the substrate, a second electronic component including external electrodes and being different in electrical function from the first electronic component mounted on the first main surface of the substrate, and a conductive pattern on the first main surface of the substrate, electrically connecting the first electronic component and the second electronic component to each other, and including one end reaching a side of one side end of the substrate, one external electrode of the first electronic component and one external electrode of the second electronic component being located on the side of the one side end of the substrate, another external electrode of the first electronic component and another external electrode of the second electronic component being connected to the conductive pattern, and the composite electronic component being mounted such that a surface of the substrate on the side of the one side end is opposed to a first main surface of a mount substrate.
US10297378B2

A standard inductance box, relating to the fields of measurement or calibration, and relating in particular to a standard gauge for transferring an inductance parameter. The standard inductance box uses unary, binary and quinary, and comprises a physical inductance box section and a simulated inductance box section, said sections being respectively arranged in a metal box. Electrodes of the physical inductance box section and the simulated inductance box section are led out. The inductance range of the standard inductance box is 1 μH-500 H. The described means achieve an inductance range of 1 μH-500 H, expanding the inductance range in the prior art, and the application of a simulated inductance box. Using unary, binary and quinary standards reduces the size and weight of the physical inductance box section, facilitating transportation and use in the field.
US10297374B1

Provided is a metal oxide varistor having an overcurrent protection function. The metal oxide varistor includes a metal oxide varistor body, a first electrode layer, a second electrode layer coated, an anistropic conductive paste (ACP) attached to a surface of the first electrode layer on one side of the first direction, a fuse plate bonded to the ACP and electrically conductive to the first electrode layer, a first copper-plated wire having one side of a second direction orthogonal to the first direction connected to the fuse plate, a second copper-plated wire having one side of the second direction bonded to the surface of the second electrode layer on the other side of the first direction, and an insulated coating member configured to surround the first copper-plated wire and the second copper-plated wire on one side of the second direction, the metal oxide varistor body and the fuse plate.
US10297371B2

Disclosed is a capacitor bushing and a method of manufacturing the same. The capacitor bushing includes insulating layers (20), formed by winding insulating fibers (22) around the outer side of a central conductor (10), and conductive layers (30) between the insulating layers (20). The wefts (34) and warps (36) that constitute the conductive fibers (32) are manufactured by sequentially forming a first coating layer (38) and a second coating layer (38′) on the surface of a core wire (37). The wefts (24 and 34) and the warps (26 and 36) of the insulating fibers (22) and the conductive fibers (32) extend obliquely with respect to the longitudinal direction of the central conductor (10). The wefts (24 and 34) and the warps (26 and 36) form a polygonal or circular shape. The present invention has a merit in that bubbles are prevented from being generated in the filling layers (40).
US10297370B1

Provided are methods for forming a rigid cable harness. An example method includes providing a curable sleeve comprising a curable compound, an adhesive, and a backing; wherein the curable adhesive tape has a longitudinal direction. The method further includes placing a plurality of cables on the sleeve in the longitudinal direction and wrapping the curable sleeve around the placed plurality of cables to form a cable harness, wherein the wrapping comprises wrapping the plurality of cables with the curable sleeve in the longitudinal direction. The method additionally includes positioning the cable harness into a desired shape and curing the curable compound of the cable harness to form the rigid cable harness, wherein the rigid cable harness has the desired shape.
US10297367B2

A composite cable includes a first twisted-pair wire formed by twisting a pair of first electric wires, a second twisted-pair wire formed by twisting a pair of second electric wires, a pair of third electric wires arranged between the first and second twisted-pair wires in a circumferential direction, each third electric wire having a larger outer diameter than the first and second electric wires, and a tape member spirally wound around an assembled article that is formed by twisting the first twisted-pair wire, the second twisted-pair wire and the pair of third electric wires together. The two twisted-pair wires have the same twist direction, the twist direction of the two twisted-pair wires is different from a twist direction of the assembled article, and the twist direction of the assembled article is different from a winding direction of the tape member.
US10297363B2

The present invention relates to a composition for forming a conductive pattern and a resin structure having a conductive pattern, wherein the composition makes it possible to form a fine conducive pattern on various polymer resin products or resin layers through a simple process, and can more effectively meet needs of the art, such as displaying various colors.
US10297357B2

The invention relates to a storage device for storing and/or transporting nuclear fuel assemblies, which includes recesses (2) defined by separating partitions (9) defining first and second recesses (2), the partition comprising: two first walls (22) defining the first and second recesses and made of an aluminium-alloy material which is free of neutron-absorbing elements, and defining therebetween a first inter-wall space (28); two second walls (30) arranged in the first space (28) and made of a material which comprises neutron-absorbing elements, the distance between the inner (36) and outer (34) surfaces of each second wall (30) defining a thickness (e2), and a distance (E) being defined between the outer surface (34) of each second wall and a median partition plane (20), the values meeting the condition 0.1≤e2/E≤0.43.
US10297350B2

Methods and systems are disclosed for determining a basal rate adjustment of insulin based on risk associated with a glucose state of a person with diabetes. A method may include detecting a glucose state of the person based on a received glucose measurement signal and determining a current risk metric associated with the detected glucose state. The method may include determining a current risk metric associated with the detected glucose state based on a weighted average of cumulative hazard values of return paths generated from a glucose state distribution around a detected glucose state. The method may include calculating an adjustment to a basal rate of a therapy delivery device based on the current risk metric associated with the detected glucose state and a reference risk metric associated with a reference glucose level.
US10297343B1

A method for using a health information exchange system which stores patient record data regarding a multiplicity of patients, to serve a first plurality of EMRs each interacting with an EMR community including a set of at least one EMR, the method comprising: for each individual EMR within the first plurality of EMRs, performing a computerized context interception process using a processor to intercept context from the individual EMR and to identify there within an event whereby a health provider using the individual EMR calls up an individual patient's record from said individual EMR; and responsive to identification of the event, using a computerized output device for providing patient record data, pertaining to the individual patient, to the health provider.
US10297340B2

Systems and methods disclosed herein include those that may receive a memory request including a requested memory address and may send the memory request directly to an address decoder associated with a stacked-die memory vault without knowing whether a repair address is required. If a subsequent analysis of the memory request shows that a repair address is required, an in-process decode of the requested memory address can be halted and decoding of the repair address initiated.
US10297339B2

Example features or aspects of the present invention are described in relation to a small, quiet integrated cooling system for an apparatus for testing electronic devices. Characteristics of the test apparatus including a low noise output, low power consumption and a compact size with a small spatial and volume footprint are selected for deployment and use in a an office like environment. The test apparatus comprises a chassis frame and a cooler frame disposed within the chassis frame and thus integrated within the test apparatus, which has a reduced form factor suitable for the in-office deployment. Embodiments offer the ability to maintain the working fluid at a constant temperature.
US10297336B2

Provided herein is a fail bit counter. The fail bit counter includes a pass/fail data receiver receiving pass/fail data indicating whether memory cells coupled to a bit line sequentially pass or fail, and a fail bit accumulator receiving a fail bit generation signal from the pass/fail data receiver, and accumulating and counting fail bits which are generated.
US10297329B2

Methods for improving channel boosting and reducing program disturb during programming of memory cells within a memory array are described. The memory array may comprise a NAND flash memory structure, such as a vertical NAND structure or a bit cost scalable (BiCS) NAND structure. In some cases, by applying continuous voltage ramping to unselected word lines during or throughout a programming operation, the boosting of channels associated with program inhibited memory cells may be improved. In one example, the slope and timing of a Vpass waveform applied to a group of unselected word lines (e.g., the neighboring word lines of the selected word line) during the programming operation may be set based on the location of the selected word line within the memory array and the locations of the group of unselected word lines within the memory array.
US10297325B2

Apparatuses and methods have been disclosed. One such apparatus includes a plurality of memory cells that can be formed at least partially surrounding a semiconductor pillar. A select device can be coupled to one end of the plurality of memory cells and at least partially surround the pillar. An asymmetric assist device can be coupled between the select device and one of a source connection or a drain connection. The asymmetric assist device can have a portion that at least partially surrounds the pillar and another portion that at least partially surrounds the source or drain connection.
US10297314B2

An integrated circuit includes a first plurality of flip flops; a first bank of resistive memory cells, wherein each flip flop of the first plurality of flip flops uniquely corresponds to a resistive memory cell of the first bank of resistive memory cells; write circuitry configured to store data from the first plurality of flip flops to the first bank of resistive memory cells; and read circuitry configured to read data from the first bank of resistive memory cells and provide the data from the first bank for storage into the first plurality of flip flops.
US10297313B2

A phase change memory device may be provided. The phase change memory device may include a plurality of Mats, a row control block and a column control block. The row control block may be provided to each of the Mats to control word lines. The column control block may be provided to each of the Mats to control bit lines. When a near phase change memory cell adjacent to the row control block and the column control block is selected, the phase change memory cells located at different positions, which may be spaced apart from the near phase change memory cell, in the Mats except for a reference Mat may be selected.
US10297312B1

A resistive memory cell includes a barrier layer containing at least one of silicon and germanium, and a metal oxide layer including an oxide of a metal element that provides a reversible chemical reaction under a bidirectional electrical bias at an interface with the barrier material layer. The reversible chemical reaction is selected from a silicidation reaction between the barrier material layer and the metal element, a germanidation reaction between the barrier material layer and the metal element, oxidation of the metal element, and reduction of the metal element.
US10297308B2

A semiconductor device may be provided. The semiconductor device may include an address input circuit and a target address generation circuit. The address input circuit may be configured to latch a bank address and an address to generate a bank active signal and a latch address based on the execution of an active operation. The target address generation circuit may be configured to generate the latch address as a target address.
US10297293B2

A semiconductor apparatus includes a decoder configured to decode an internal command, and generate a first decoding command and a second decoding command. The semiconductor apparatus may include an output timing control circuit configured to delay the second decoding command by a predetermined cycle of the internal clock, and output a delayed decoding command. The semiconductor apparatus may include an input/output control latch circuit configured to output the internal address as a first latch address based on the second decoding command and the delayed decoding command. The semiconductor apparatus may include an input control latch circuit configured to output the internal address as a second latch address based on the first decoding command.
US10297280B1

A method according to one embodiment includes generating a y-position estimate based on a servo readback signal from a servo reader reading a servo band, retrieving or calculating a nonlinearity-correction value corresponding to the y-position estimate, adjusting the y-position estimate using the nonlinearity-correction value, and outputting the adjusted y-position estimate. A computer program product for compensating for nonlinearity in a timing based servo pattern according to one embodiment includes a computer readable storage medium having program instructions embodied therewith. The computer readable storage medium is not a transitory signal per se. The program instructions are readable and/or executable by a controller to cause the controller to perform the foregoing method.
US10297279B1

Methods of planarizing materials, such as where surface topographies are created as part of a thin film device fabrication process are described. These methods find particular application in the creation of nano-sized devices, where surface topographical features can be effectively planarized without adversely creating other surface topographies and/or causing deleterious effects a material junctions. Methods include the step of depositing a sacrificial layer overlying at least a portion of a first material layer and at least a portion of a backfilled second material at a junction between the first and second materials. The sacrificial layer substantially retains the surface topography of the microelectronic device. Chemical-mechanical planarization is performed on a surface of the sacrificial layer but leaving a remainder portion of the thickness of the sacrificial layer. Then, physical or dry chemical process is conducted for removing the remainder of the sacrificial layer and at least a portion of at least one of the first and second materials.
US10297278B2

Structures and methods for fabrication servo and data heads of tape modules are provided. The servo head may have two shield layers spaced apart by a plurality of gap layers and a sensor. Similarly, the data head may have two shield layers spaced apart by a plurality of gap layers and a sensor. The distance between the shield layers of the servo head may be greater than the distance between the shield layers of the data head. The material of the gap layers may include tantalum or an alloy of nickel and chromium. The material for the gap layers permits deposition of gap layers with sufficiently small surface roughness to prevent distortion of the tape module and increase the stability of the tape module operation.
US10297277B1

A magnetic head includes a coil, and a magnetic path forming section for defining a first space for a portion of the coil to pass through. The magnetic path forming section includes a core section. The coil includes a first winding portion and a second winding portion connected in series. The first winding portion includes one or two first coil elements extending to pass through the first space, and extends once or twice around the entire perimeter of the core section. The second winding portion does not pass through the first space, and extends less than once around the entire perimeter of the core section to rotate n degrees about a center point of the core section, where n is greater than 270 and smaller than 360.
US10297273B2

Input of a conversation is received. The conversation includes at least a first user. An utterance of the conversation is analyzed to identify a dialog act attribute, an emotion attribute, and a tone attribute. The dialog act attribute, emotion attribute, and tone attribute are annotated to the utterance of the conversation. The conversation is validated based on the annotated attributes compared with a threshold. The annotated conversation and the validation of the conversation are stored.
US10297271B1

A matrix is generated that stores sinusoidal components evaluated for a given sample rate corresponding to the matrix. The matrix is then used to convert an audio signal to chroma vectors representing of a set of “chromae” (frequencies of interest). The conversion of an audio signal portion into its chromae enables more meaningful analysis of the audio signal than would be possible using the signal data alone. The chroma vectors of the audio signal can be used to perform analyzes such as comparisons with the chroma vectors obtained from other audio signals in order to identify audio matches.
US10297261B2

The present invention provides improvements to prior art audio codecs that generate a stereo-illusion through post-processing of a received mono signal. These improvements are accomplished by extraction of stereo-image describing parameters at the encoder side, which are transmitted and subsequently used for control of a stereo generator at the decoder side. Furthermore, the invention bridges the gap between simple pseudo-stereo methods, and current methods of true stereo-coding, by using a new form of parametric stereo coding. A stereo-balance parameter is introduced, which enables more advanced stereo modes, and in addition forms the basis of a new method of stereo-coding of spectral envelopes, of particular use in systems where guided HFR (High Frequency Reconstruction) is employed. As a special case, the application of this stereo-coding scheme in scalable HFR-based codecs is described.
US10297258B2

A microphone unit has a transducer, for generating an electrical audio signal from a received acoustic signal; a speech coder, for obtaining compressed speech data from the audio signal; and a digital output, for supplying digital signals representing said compressed speech data. The speech coder may be a lossy speech coder, and may contain a bank of filters with center frequencies that are non-uniformly spaced, for example mel frequencies.
US10297254B2

In various implementations, upon receiving a given voice command from a user, a voice-based trigger may be selected from a library of voice-based triggers previously used across a population of users. The library may include association(s) between each voice-based trigger and responsive action(s) previously performed in response to the voice-based trigger. The selecting may be based on a measure of similarity between the given voice command and the selected voice-based trigger. One or more responsive actions associated with the selected voice-based trigger in the library may be determined. Based on the one or more responsive actions, current responsive action(s) may be performed by the client device. Feedback associated with performance of the current responsive action(s) may be received from the user and used to alter a strength of an association between the selected voice-based trigger and the one or more responsive actions, wherein the altering includes incrementing or decrementing a count corresponding to the strength of association based on the feedback being positive or negative respectively.
US10297251B2

An automatic speech recognition system for a vehicle includes a controller configured to select an acoustic model from a library of acoustic models based on ambient noise in a cabin of the vehicle and operating parameters of the vehicle. The controller is further configured to apply the selected acoustic model to noisy speech to improve recognition of the speech.
US10297248B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for modulating language model biasing. In some implementations, context data is received. A likely context associated with a user is determined based on at least a portion of the context data. One or more language model biasing parameters based at least on the likely context associated with the user is selected. A context confidence score associated with the likely context based on at least a portion of the context data is determined. One or more language model biasing parameters based at least on the context confidence score is adjusted. A baseline language model based at least on the one or more of the adjusted language model biasing parameters is biased. The baseline language model is provided for use by an automated speech recognizer (ASR).
US10297242B2

A ukulele includes a ukulele main body and a circuit board. The ukulele main body includes a head, strings, a fret board, and a body. A front surface of the body is provided with a saddle and a bridge. The circuit board is disposed in the body. The circuit board includes a power supply module, a Bluetooth audio input module, a pickup module, a mixing module, and an audio output module. The ukulele can be played in conjunction with a smart phone accompaniment and ensure the timbre of playing.
US10297238B1

A cap for sealing the open end of a resonator tube in sonic communication with a bar percussion instrument tone bar. Not only does the resonator cap close the opening, but it provides an additional percussive playing surface and amplifies the sound produced when the tone bar is struck. This creates infinitely many new and additional sounds for this class of musical instrument.
US10297234B2

Establishing a curved virtual display surface on a physical display is provided. A process identifies dimensions of a digital object for display on a physical display of a computer system, the physical display including fixed display dimensions. Based on the identified dimensions of the digital object, the process establishes on the physical display a curved virtual display surface for displaying the digital object, and displays the digital object in the curved virtual display surface.
US10297231B2

According to an aspect, a display apparatus includes: an image display panel including a plurality of pixels and displaying an image; and a signal processor generating a second signal by multiplying signal values for a plurality of sub-pixels making up each of the plurality of pixels by a gain, the signal values being included in a first signal that is an input signal of the image. The the signal processor calculates a luminance of each of the plurality of pixels based on the signal values of the sub-pixels included in the respective pixels. The signal processor increases the gain by which the signal values of the sub-pixels of the pixel having a luminance greater than a first luminance threshold are multiplied, in accordance with the luminance of the corresponding pixel.
US10297228B2

A display apparatus includes: a display panel including a plurality of pixels; a storage configured to store a plurality of lookup tables respectively corresponding to a plurality of gamma values; and a processor configured to determine a lookup table, from among the plurality of lookup tables, to be applied to each of the plurality of pixels based on a location of each of the plurality of pixels on the display panel, and determine a brightness value of each of the plurality of pixels using the determined lookup table.
US10297213B2

An array substrate with a data line sharing structure is described. The array substrate comprises a source driver; a plurality of scan lines for receiving a scan signal wherein the scan lines comprise a plurality of odd scan lines and even scan lines; and a plurality of data lines for correspondingly receiving a data signal of the source driver wherein the data lines comprise a plurality of odd data lines and even data lines which are sequentially arranged; wherein the scan lines and the data lines are insulatedly interlaced in an array, each pixel region comprises a data line and at least two scan lines, each pixel region is composed of a plurality of sub-pixels with different color types correspondingly, and the drive polarities of the sub-pixels with the same color types in different pixel regions comprises a positive polarity and a negative polarity based on the data signal.
US10297212B2

A display device includes an image display panel on which pixels are arranged, a backlight which lights the image display panel from a rear of the image display panel, a first device which controls the backlight, and a second device which controls the image display panel. The first device generates an image signal, outputs the image signal to the second device, determines a light source lighting amount of the backlight on the basis of the image signal by blocks obtained by dividing a display surface of the image display panel and luminance distribution information on the backlight stored in advance, and controls the backlight by the light source lighting amount. The second device acquires the image signal, converts the image signal to a display signal for controlling display of the image display panel, and controls the image display panel.
US10297204B2

A shift register unit, a driving method, a gate driving circuit and a display device are provided. The shift register unit includes: a charging module, a reset module, a pull-up module, a first pull-down module, a second pull-down module and a compensation module. In a denoising phase, the first pull-down module can denoise the pull-up node and the output terminal respectively under the control of a pull-down node, a third power supply signal from a third power supply signal terminal and a switch power supply signal from a switch power supply terminal. Therefore, noises of the pull-up node and the output terminal in the shift register unit are reduced, the output effect of the shift register unit is improved and the problem of noise existing in driving process of the shift register unit is solved.
US10297202B2

An organic light-emitting display panel, a driving method thereof, and an organic light-emitting display device are provided. The organic light-emitting display panel includes a pixel driving circuit comprising an organic light-emitting element, a driving module, an initialization module, a data write-in module, and a light-emitting control module. The driving module includes a control end, a first end and a second end. The light-emitting control module is configured to transmit a signal to the second end of the driving module. The driving module is configured to drive the organic light-emitting element to emit light based on the signal transmitted by the light-emitting control module. The initialization module is configured to initialize a voltage level of the control end and a voltage level of the first end of the driving module. The data write-in module is configured to write a data signal into the control end of the driving module.
US10297200B2

A display device is provided in which a control switching element arranged in a location to which a voltage used for driving a display panel is applied may identify whether an abnormal current has occurred in the display panel in an off-situation so as to easily and accurately detect whether or not a panel defect exists, in a panel defect detection interval wherein the panel defect detection interval is an interval having no abnormal current occurring therein when no panel defect exists. A panel defect detection system and a panel defect detection method are also provided.
US10297190B2

In some examples, a device includes at least two light sources, buffer circuitry configured to receive a bit stream, and driver circuitry configured to receive the bit stream from the buffer circuitry and to drive the at least two light sources based on the bit stream. In some examples, the device further includes monitor circuitry configured to determine a voltage drop across each light source of the at least two light sources and snooping circuitry configured to read an inactive bit of the bit stream. In some examples, the snooping circuitry is further configured to read an active bit of the bit stream after reading the inactive bit and based on a value of the inactive bit and to cause the monitor circuitry to determine a voltage drop across a light source of the at least two light sources based on a value of the active bit.
US10297185B2

A controller, a source driver integrated circuit (IC), a display device, and a signal transmission method thereof. When data is received from the source driver integrated circuit and the received data is recognized, data recognition errors that would otherwise be caused by an asynchronous state between an internal clock and data can be prevented.
US10297181B2

The present invention provides a system of sensing AMOLED pixel driving property and an AMOLED display device. In the sensing stage, the anode voltage of the organic light emitting diode and the output voltage of the variable negative voltage source (21) in the AMOLED pixel driving circuit (10) are coupled to the voltage addition circuit (22), and the voltage addition circuit (22) inputs the sum up result to the analog to digital converter (23), and because the variable negative voltage source (21) adjusts according to a change of the anode voltage of the organic light emitting diode, and the variable negative voltage source (21) and the voltage addition circuit (22) act together, and then an input voltage of the analog to digital converter (23) can be adjusted to make the input voltage always be in a sensing range of the analog to digital converter (23).
US10297180B2

A display device includes a plurality of pixels. Each pixel includes two or more subpixels. The plurality of pixels includes a first subpixel configured to transmit light of a first color and a second subpixel configured to transmit light of a second color that is distinct from the first color. The display device also includes a beam steering device, and one or more compensators located between the plurality of pixels and the beam steering device and configured to change a direction of the light from the first subpixel and transmit the light toward the beam steering device and change a direction of the light from the second subpixel and transmit the light toward the beam steering device.
US10297178B2

A transparent display device attached to a predetermined product, displaying article information in the product, advertisement, etc. is disclosed. The transparent display device comprises a frame including an opening; a transparent display panel arranged at the opening; and a control module arranged in an area of the frame to control the transparent display panel, wherein the frame in which the transparent display panel and the control module are arranged is provided to cover a front surface of a predetermined product so as to form a door unit of the predetermined product, and is rotatably moved when the inside of the predetermined product is opened and closed.
US10297177B1

A banner support supports a banner or flag unfurled on the pole. When a preset trigger wind load is exceeded, the banner bracket rotates away from the direction of the wind so as to limit the stress on the pole. The mechanism which enables bracket rotation comprises a disk-shaped cam with a spring-loaded plunger extending from the support arm that biases a cam follower into a proximal cam detent. Subject to the restraint of the cam follower, the cam rotates around a transversely axial cam shaft connected to the support arm. The cam is rigidly attached to the banner bracket, which rotates along with the cam. When the preset wind load is exceeded, the cam follower is forced out of the cam detent, allowing the cam and the connected banner bracket to rotate away from the wind direction. As the banner turns away from the wind, the wind stress decreases, allowing the spring plunger to force the cam follower back into the cam detent, thereby restoring the banner to its rest position.
US10297176B1

A swinging banner display having a tube handle that doubles as a container for the banner when not being displayed. The banner is attached to a rod which is rotatably attached to the tube handle. The tube handle is sized to fit within a hand but large enough to hold the banner, shaft and disc when the banner is furled. A rotatable disc inside the tube handle has a knob on the perimeter that engages with ribs on the inside of the tube handle to make a rattling noise when the banner is rotated.
US10297171B2

Label systems for cold environment use and application are described. The label systems comprise a first label assembly adhered to an article subjected to cold temperatures and a second label assembly that is readily applied to the first label assembly, and particularly when the first label assembly is at a relatively cold temperature. The label systems described are particularly well suited for labeling blood bags and other articles subjected to cold storage.
US10297166B2

The disclosed embodiments provide a system that improves learner engagement in online discussions. During operation, the system selects an experience level for use in moderating answers to a question submitted to an online forum. Next, the system matches the experience level to a first subset of users in a set of potential respondents to the question. The system then improves an engagement of the first subset of users with the online forum by generating output that targets the first subset of users with the question, prior to displaying the question to a first remainder of the potential respondents that does not include the first subset of users.
US10297159B2

A method for providing air traffic control (ATC) message data onboard an aircraft is provided. The method identifies ATC commands associated with text-based messages, by at least one processor onboard the aircraft, wherein the ATC commands comprise instructions to follow one or more particular procedures associated with the ATC audio messages and the ATC direct text messages; identifies, by the at least one processor, graphical content associated with the ATC commands; and presents an ATC graphical rendering environment comprising at least the graphical content, via at least one aircraft onboard display communicatively coupled to the at least one processor.
US10297155B2

Provided is an object detector capable of suppressing any decrease in accuracy of object detection under a low illuminance environment such as nighttime or in tunnels, whereby suppressing a failure of Adaptive Cruise Control, pre-crash safety systems, and the like. The object detector includes: a distance information calculation unit 105 configured to calculate distance information to an object around a vehicle from an image captured by a plurality of imaging units 102, 103; an extraction unit 106 configured to extract at least an object existing in a long distance region away from the vehicle and having a specific color from among objects in the image based on the distance information; and an output unit 108 configured to output the distance information to the object having been extracted by the extraction unit 106.
US10297148B2

Examples include a network computer system and/or service which operates to remotely monitor vehicles to detect and characterize driving actions of drivers with respect to specific road segments of a roadway, enabling driving actions performed by multiple drivers at a specific road segment to be characterized and modeled. Models can inform municipalities about potential traffic hazards or other safety challenges. Individual drivers can also be measured against the model to help understand driver performance. Validating vehicle data against baseline values can also detect spoofing of that data.
US10297140B2

Obtaining a target location of a user associated with a body worn device (50) that receiving information related to a condition of user and communicates an indication of the condition to a server (12) over a network (24). The method including: providing a network (24) formed of a plurality of lighting units (42, 32) and a database (22) for maintaining information describing a geographic location of each of the plurality of lighting units, each lighting unit transmitting a unique identifier; providing the body worn device with a lighting unit identifier sensor (52), the sensor receiving lighting unit identifiers of at least one of the plurality of lighting units; the body worn device communicating the received lighting unit identifiers with the indication in a message to the server via the network; and the database providing a geographic location of the one or more lighting units, the geographic location corresponding to the target location of the body worn device.
US10297136B2

There is provided a head-mounted display, a notification apparatus, a notification system, a notification method, and a program that allow a person not wearing a head-mounted display to know that a user still continues to wear a head-mounted display after a notification that a wearing time of the head-mounted display of this user has exceeded a predetermined time. A wearing time determination block determines a wearing time of the head-mounted display of the user. A notification block executes a first notification to the user if the wearing time has exceeded a first time and, when the wearing time has exceeded a second time longer than the first time, and executes a second notification to a person not wearing the head-mounted display.
US10297124B2

An interface component for insertion in a certain-sized connection box placed for another component such as a switch or other electrical mechanism. The interface component may bring in new capabilities plus maintain the capabilities of the removed component. The box need not be removed, or if the boxed is removed the structure or space encompassing the box need not be enlarged. Further, no new wiring is necessarily needed. This placement or substitution may be particularly applicable to rooms of hotels, motels, and other similar facilities. Neither time nor expense of redoing structure to hold a larger box or provide more space or wiring is needed. In many cases, there is not adequate space to add components for providing additional capabilities to a room.
US10297123B2

A haptic zipper is provided. The haptic zipper includes a first chain, a second chain opposing the first chain, a slider, an actuator coupled to the slider, and a controller coupled to the actuator. The slider is coupled to the first chain and the second chain to mesh or disengage opposing teeth of the first and second chains. The controller is configured to process an input signal including data related to a haptic effect, generate a haptic drive signal based on the data, and transmit the haptic drive signal to the actuator to render the haptic effect.
US10297119B1

An electronic device can include one or more actuators. The actuator or actuators may be operably connected to a feedback surface. Movement is produced in at least one actuator that causes an audio output. The movement in the actuator(s) by itself may produce the desired audio output. The movement in the actuator(s) can produce a force in at least one direction that produces movement in the feedback surface, and the movement in the feedback surface produces audio output. The movement in the actuator may also provide a haptic output to a user.
US10297112B2

An apparatus for implementing a game having a deterministic component and a non-deterministic component wherein a player uses the game through at least one player interface unit. Each player interface unit generates a player record indicating player-initiated events. A random number generator provides a series of pseudo-random numbers and a rules library stores indexed rules for one or more games. An interface registry stores mapping records where the mapping records are used to associate the player-initiated events to pre-selected rules in the rules library. A control means is coupled to the player interface to receive the output of the player interface unit, coupled to the interface registry, the rules library, and the random number generator. The control means processes the player record and returns an output record to the player interface unit where the output record is determined by executing the game's rules with reference to the pseudo-random numbers and predefined combinatorial algorithms for selecting sets of the pseudo-random numbers. In various embodiments, random numbers may be generated for use in a particular game or set of games, but not for use in all games.
US10297101B2

A gaming system is disclosed which comprises a game controller arranged to implement a game, at least one game meter arranged to obtain game related information, and an interface device arranged to facilitate transfer of at least some of the obtained game related information to a portable data storage device in response to a transfer instruction. A corresponding method of monitoring a gaming device is also disclosed.
US10297092B2

One example dynamic display system includes: (a) a vehicle including steering, an accelerator, brakes, sensors recording sensor data, a display, a processor, and memory; (b) a display program operatively coupled to the processor and configured to: determine a user hindrance rating based on the sensor data, and select instructions from a pool of instructions based on the hindrance rating and a user-selectable fidelity level, the pool of instructions including visual cues, and audio cues.
US10297087B2

An exemplary merged reality scene capture system (“system”) receives a first frame set of surface data frames from a plurality of three-dimensional (“3D”) capture devices disposed with respect to a real-world scene so as to have a plurality of different vantage points of the real-world scene. Based on the first frame set, the system generates a transport stream that includes color and depth video data streams for each of the 3D capture devices. Based on the transport stream, the system generates entity description data representative of a plurality of entities included within a 3D space of a merged reality scene. The plurality of entities includes a virtual object, the real-world object, and virtual viewpoints into the 3D space from which a second frame set of surface data frames are to be rendered representing color and depth data for both the virtual and the real-world objects.
US10297081B2

A method includes defining a virtual space associated with a first user. The virtual space is associated with a first head-mounted device (HMD). The virtual space includes an avatar object associated with a second user. The method includes receiving line-of-sight data on the second user, wherein the second user is associated with a second HMD. The method includes receiving sound data that is based on utterance of the second user at a timing different from that of the line-of-sight data. The method includes synchronizing a timing of controlling the avatar object in accordance with the line-of-sight data and a timing of outputting sound that is based on the sound data from the first HMD. The method includes controlling the avatar object in accordance with the line-of-sight data based on the synchronized timing. The method includes outputting the sound that is based on the synchronized timing.
US10297080B2

A computer-implemented method of optimizing an automatically meshable shape is provided. The method includes the steps of: providing a continuous boundary of the automatically meshable shape, the continuous boundary being defined by a spline formed by two or more spline segments, wherein each segment has a terminal point at each end of the segment; parameterizing shape properties of the segments such that selected ones of the shape properties can be varied under operation of an optimization algorithm; linking each segment to its immediately adjacent segments such that the terminal points of the segment remain coincident with the terminal points of its immediately adjacent segments under operation of the optimization algorithm; and using the optimization algorithm to vary selected ones of the shape properties of the segments, whereby the spline defines an adjusted boundary that remains continuous so that the shape remains automatically meshable.
US10297077B1

Systems and methods for implementing hidden mesh (or stencil mesh) graphics rendering techniques for use in applications such as head mounted displays (“HMDs”) are described. Exemplary systems and algorithms are disclosed for masking or eliminating pixels in an image from the list of pixels to be rendered, based on the observation that a significant number of pixels in the periphery of HMD images cannot be seen, due to the specific details of the optical and display/electronics performance of each particular implementation.
US10297066B2

A computer implemented method and a computer system for animating parts of a virtual object in a virtual world, accesses joint data for each joint of a chain of joints associated with parts of a virtual object, joint data including length data defining a vector length for a vector from the joint to a next joint, the length data corresponding to a length of a part in the virtual world; accesses data for a target curve for use in defining possible target locations for the joints of the parts of the virtual object, and retrieves or estimates a length of the curve; and processes the joint data to determine a total length of the vectors for the joints of the chain using the length data for the vectors; to determine scaled vectors by determining a scaled length for the vector for each joint of the chain based on the length of the curve and the total length of the vectors for the joints of the chain; to fit the scaled vectors for the joints of the chain to the curve by rotating the scaled vectors, with a first joint in the chain fitted to a start point on the curve and the last joint in the chain fitted at or near an end point on the curve; rescale the scaled vector for each joint of the chain to have the vector length; to set the first joint in the chain to the start point on the curve; and to determine locations for the joints by rotating the vectors to fit the last joint in the chain to the end point of the curve and to determine the locations of intermediate joints by distributing vector rotations for the intermediate joints among the vectors.
Patent Agency Ranking