US11677791B1
A computer-implemented method is executed using a threat assessment server that is communicatively coupled via one or more networks to one or more different cloud computing service providers and comprises receiving first input data specifying a first cloud service account that is associated with two or more cloud computing instances and/or two or more cloud storage instances, the cloud computing instances or cloud storage instances being hosted at a first cloud computing service provider, the first cloud service account being from among one or more different cloud service accounts that are associated with the one or more different cloud computing service providers each hosting respective cloud computing instances and/or cloud storage instances; receiving second input data specifying an entry point identifier of a particular cloud resource from among the two or more cloud computing instances and/or two or more cloud storage instances; using a plurality of first network calls from the threat assessment server to the first cloud computing service provider, accessing an Identity and Access Management (IAM) role that is associated with the particular cloud resource and accessing one or more policies that are attached to the IAM role, the one or more policies specifying one or more other resources and one or more actions that are allowable with the one or more other resources; based on the one or more other resources and the one or more actions, digitally creating and storing a first entry in a list of affected resources that is stored in main memory of the threat assessment server; recursively executing a plurality of second network calls to access one or more other IAM roles and one or more other policies of the one or more other resources, and updating the list to create one or more second entries based on one or more service control policies that are associated with the first cloud service account; inspecting one or more networking rules defined in the first cloud service account to determine if network traffic is possible between a first resource and a second resource specified in the list of affected resources, and based on the inspection, digitally creating and storing a second list of source resources, destination resources, protocols and ports on which network traffic is possible; joining the first list and the second list and de-duplicating entries to create and store a joined list; based on the list, executing one or more updates to the networking rules to change access to one or more vulnerable resources in the joined list, and deploying the updates using one or more calls from the threat assessment server to cloud service tools of the cloud service provider.
US11677782B2
Aspects of the disclosure relate to identifying potentially malicious messages and generating instream alerts based on real-time message monitoring. A computing platform may monitor a plurality of messages received by a messaging server associated with an operator. Subsequently, the computing platform may detect that a message of the plurality of messages is potentially malicious. In response to detecting that the message of the plurality of messages is potentially malicious, the computing platform may execute one or more protection actions. In executing the one or more protection actions, the computing platform may generate an alert message comprising information indicating that the message of the plurality of messages is potentially malicious. Then, the computing platform may send the alert message to the messaging server, which may cause the messaging server to deliver the alert message to a computing device associated with an intended recipient of the message.
US11677779B2
A security module for a CAN node includes a RXD input interface for receiving data from a CAN bus, TXD output interface for transmitting data to the CAN bus, and a RXD output interface for providing data to a local controller. The security module is configured to receive a CAN frame from the CAN bus. The CAN frame includes a CAN message. The security module is also configured to compare an identifier of the received CAN frame with at least one identifier associated with the local controller; and upon detection of a match between the identifier of the received CAN frame and the at least one identifier associated with the local controller: pass the CAN message to the local controller via the RXD output interface; decouple the local controller from the CAN bus; and invalidate the CAN message on the CAN bus via the TXD output interface.
US11677774B2
Techniques, methods and/or apparatuses are disclosed that enable facilitation of remediation of one or more vulnerabilities detected in a web application. Through the disclosed techniques, methods and/or apparatuses, users will be able to navigate to respective web pages of the detected vulnerabilities and snap directly to the vulnerabilities within the webpages. This allows the users to immediately know the location of the vulnerability, and inline feedback can be provided on the issue, including description, severity, solution and plugin outputs.
US11677768B2
Various embodiments of the present disclosure are directed to automatic improved network architecture generation. In this regard, embodiments may process data representing a network architecture to generate an improved network architecture that resolves one or more vulnerabilities associated with the network architecture. In this regard, embodiments such as apparatuses, methods, and computer program products, are provided to identify a network architecture comprising a networked device set, determine cybersecurity threat set associated with the network architecture, identify an improved network configuration data set based on the cybersecurity threat set and the network device architecture, wherein each recommended sub network configuration of the improved network configuration data set decreases a threat likelihood associated with at least one determined cybersecurity threat from the cybersecurity threat set, generate an improved network architecture based on the network architecture and the improved network configuration data set, and output the improved network architecture.
US11677762B2
A method, computing device and system are disclosed for evaluating security of virtual infrastructures of tenants in a cloud environment. At least one security metric may be calculated for virtual infrastructures of a tenant based on information associated with at least one virtual resource of the first tenant and at least one interaction of the at least one virtual resource of the first tenant with at least one virtual resource of at least one other tenant in a multi-tenant virtualized infrastructure. At least one security parameter may be evaluated for the first tenant based at least in part on at least one of the at least one calculated security metric for monitoring a security level of the first tenant relative to the at least one other tenant in the multi-tenant virtualized infrastructure.
US11677761B2
Systems and methods for detecting security threats using application execution and connection lineage tracing with embodiments of the invention are disclosed. In one embodiment, detecting suspicious activity in a network includes receiving at a collector server a first activity data including a first set of attributes, combining a first set of context information with the activity data to generate a first activity record, comparing the first activity record to a set of baseline signatures, incrementing a count of a first matching baseline signature when the first activity record has the same values for all attributes, receiving from a second activity data including a third set of attributes, combining a second set of context information with the second activity data to generate a second activity record, and generating an alert when the attributes of the second activity record differ from all baseline signatures.
US11677760B2
Techniques and mechanisms are disclosed for configuring actions to be performed by a network security application in response to the detection of potential security incidents, and for causing a network security application to report on the performance of those actions. For example, users may use such a network security application to configure one or more “modular alerts.” As used herein, a modular alert generally represents a component of a network security application which enables users to specify security modular alert actions to be performed in response to the detection of defined triggering conditions, and which further enables tracking information related to the performance of modular alert actions and reporting on the performance of those actions.
US11677757B2
A method for identifying malicious encrypted network traffic associated with a malware software component communicating via a network, the method including, for the malware, a portion of network traffic including a plurality of contiguous bytes occurring at a predefined offset in a network communication of the malware; extracting the defined portion of network traffic for each of a plurality of disparate encrypted network connections for the malware; training an autoencoder based on each extracted portion of network traffic, wherein the autoencoder includes: a set of input units each for representing information from a byte of an extracted portion; output units each for storing an output of the autoencoder; and a set of hidden units smaller in number than the set of input units and each interconnecting all input and all output units with weighted interconnections, such that the autoencoder is trainable to provide an approximated reconstruction of values of the input units at the output units; selecting a set of one or more offsets in the definition of a portion of network traffic as candidate locations for communication of an initialization vector for encryption of the network traffic, the selection being based on weights of interconnections in the autoencoder; and identifying malicious network traffic based on an identification of an initialization vector in the network traffic at one of the candidate locations.
US11677752B2
The present invention relates to a method of remotely configuring access to at least one home automation device (D) that is part of a home-automation installation (Su), the home automation installation comprising at least one home automation device (D) and at least one central control unit (U), and the method being performed by a first remote access service (Svc1) carried out by a management unit (Sv) and comprising the following steps: receiving (ECfSvc12) an information message (MIn) relating to the presence of the home automation device (D) from a central control unit (U) to which the device (D) is linked; determining (ECfSvc13) a second service (Svc2) associated with the type of home automation device (D) for which remote access must be configured with corresponding access rules; configuring (ECfSvc110) an access rights reference system in order to accept at least one control command (MCa) from the second service (Svc2) or transmitting monitoring data (MSa) to the second service (Svc2) on behalf of the home automation device (D). The invention also relates to a control and monitoring method.
US11677748B2
The service layer may leverage the access network infrastructure so that applications on a device may bootstrap with a machine-to-machine server without requiring provisioning beyond what is already required by the access network.
US11677744B2
A user authentication system includes a main body device and an authentication device. The main body device has an authentication code transmission requesting unit, a verification unit, and an unlocking unit. The authentication code transmission requesting unit generates an authentication code transmission request including a first value, and transmits the authentication code transmission request to the authentication device. The authentication device generates an authentication code in response to the first value in the authentication code transmission request, and transmits the authentication code to the main body device. The verification unit determines that authentication is successful if the authentication code is received from the authentication device. When the verification unit determines that the authentication is successful, the unlocking unit enables a predetermined functionality.
US11677734B2
A computer-implemented system and method for pool-based identity authentication for service access without use of stored credentials is disclosed. The method in an example embodiment includes providing provisioning information for storage in a provisioning repository; receiving a service request from a service consumer, the service request including requestor identifying information; generating an authentication request to send to an authentication authority, the authentication request including requestor identifying information; receiving validation of an authenticated service request from the authentication authority; and providing the requested service to the service consumer.
US11677732B2
Techniques are disclosed relating to contextual authentication across different applications based on user communications. In some embodiments, a user is preauthenticated to certain actions on a second application based on the user's communication via a first application. The user's communication via a first application provides contextual information that may be used to preauthenticate a request to perform an action on the second application. Contextual information may include the user's communication itself, communications characteristics that are determined from the user's communications, or both. In some embodiments, the degree of preauthentication progressively increases or decreases with the degree of use on the first application; that is, the user is preauthenticated to greater or fewer portions of an authentication procedure, to perform greater or fewer actions, or to perform actions more or less critical to security, as additional information regarding the user's communication on the first application becomes available. In some embodiments, preauthentication may be revoked as additional contextual information becomes available on the first application.
US11677731B2
Systems and techniques for an adaptive authentication system are described herein. In an example, an adaptive authentication system is adapted to receive a request at a first entity from a second entity for secure data of a user, where the second entity is remote from the first entity. The adaptive authentication system may be further adapted to transmit a prompt to a user device associated with the user for authentication of the user and authentication of the request. The adaptive authentication system may be further adapted to receive a response to the prompt and authenticate the user and the request based on the response. The adaptive authentication system may be further adapted to transmit the secure data of the user to the second entity.
US11677712B2
A system for distributed domain name address resolution, including top-level domain name address resolution, and method for use of the same are disclosed. In one embodiment of the system, a blockchain stores distributed domain names with respective Internet Protocol address information. A smart contract, which defines shared logic to execute operations on the blockchain, runs on the blockchain. With respect to distributed domain names, the system may perform read operations to identify the Internet Protocol address information, create operations to create a new distributed domain name with respective Internet Protocol address information, delete operations to remove a distributed domain name, and update operations to update the mapping between a distributed domain name and the respective Internet Protocol address information.
US11677709B2
Methods and systems are enclosed herein for automatically managing email communication between a group of users and a group of target prospects. A sequence of outbound emails is automatically sent on behalf of a user to a prospect. Based upon the prospect's inbound replies (or lack thereof) the system will perform preconfigured actions, such as stopping automated communications and deferring to the user for manual action.
US11677691B2
In various embodiments, a mentor application automatically obtains assistance with software applications. The mentor application generates a computer-generated help request associated with a first user of a software application. Based on the computer-generated help request and a set of user contexts associated with a set of users, the mentor application computes match scores. Each match score predicts how suitable a particular user is for servicing the computer-generated help request. Based on the match scores, the mentor application transmits at least one help request notification to at least one user included in the set of users to determine a second user to service the computer-generated help request. The mentor application then establishes a computer connection between the first user and the second user through which an interactive help session between the first user and the second user is held.
US11677688B2
Apparatuses (e.g., systems and devices) and methods to view otherwise hidden connectivity of networking devices. An electronic device such as a network device connected to a variety of different devices, may be observed through a real-time image onto which information about the connectivity and/or connections may be display to show identity, connectivity state and other information associated with ports of the network device(s). These methods may be implemented on a mobile device used to capture images of the network device and present an overlay of virtual objects on the captured images to a user in real time. The virtual objects may dynamically move or change shape in real time depending on the movement of the mobile device. One or more filtering techniques may be used to stabilize the virtual objects with respect to the captured images.
US11677683B2
A system and method for managing bandwidth of an upstream communications channel in a communications system.
US11677681B1
Systems and methods for allocating computing resources within a distributed computing system are disclosed. Computing resources such as CPUs, GPUs, network cards, and memory are allocated to jobs submitted to the system by a scheduler. System configuration and interconnectivity information is gathered by a mapper and used to create a graph. Resource allocation is optimized based on one or more quality of service (QoS) levels determined for the job. Job performance characterization, affinity models, computer resource power consumption, and policies may also be used to optimize the allocation of computing resources.
US11677675B2
Path MTU determination in Generic Routing Encapsulation (GRE) tunnel is presented. A source network device transmits, to a destination network device that is a second endpoint of the GRE tunnel, multiple GRE encapsulated packets that include multiple inner packets respectively, where each inner packet has an inner header used to deliver that inner packet to the source network device and a different payload, and where each of these GRE encapsulated packets has a different size. The source network device receives a first portion of the inner packets from the destination network device and does not receive a second portion of the inner packets. The source network device determines a path MTU to the destination network device based on the size of the GRE encapsulated packet with a largest size for which a corresponding inner packet is received at the source network device from the destination network device.
US11677674B2
Method and computing devices for enforcing packet order based on packet marking. Upon occurrence of a link failure, a first device reallocates traffic initially forwarded through the failed link to an alternative link and marks the reallocated traffic with a first flag. Upon recovery of the failed link, the reallocated traffic is forwarded again through the recovered link and marked with a second flag different from the first flag. A second device calculates a reference inter-packet time for received traffic marked with the first flag. For received traffic marked with the second flag, the second device calculates a current inter-packet time. The current inter-packet time is compared with the reference inter-packet time, to determine if the traffic marked with the second flag shall be forwarded immediately or if the forwarding shall be delayed.
US11677673B1
A system for managing traffic between servers, the system may include first tier switches that are coupled to the servers; second tier switches that are coupled to the first tier switches and to third tier switches; and controllers. Wherein each first tier switch comprises first queues. Wherein each second tier switch comprises second queues. The controllers are configured to control a traffic between the first tier switches and the second tier switches attributed to the traffic between the servers, (a) on, at least, a queue granularity; (b) while controlling some first queues to provide buffer extension to some second queues, and (c) while controlling some second queues to provide buffer extension to some first queues.
US11677670B2
A method for determining a sending period of a packet in a deterministic network and an apparatus are disclosed. The method includes: receiving a first packet; determining a first period, where the first period is a sending period of the first packet; determining timestamp information of the first packet based on the first period, where the timestamp information is used to indicate a time difference between a first time and a second time, the first time is a time at which the first packet starts to be sent in the first period, and the second time is a start time of the first period; encapsulating the timestamp information into the first packet to obtain a second packet; and sending the second packet.
US11677665B2
A computer-implemented method and a transport manager system operate to reduce network congestion by detecting one or more data flows in a network, determining, using a candidate flow detection threshold, whether a data flow of the one or more data flows is a candidate flow, the candidate flow detection threshold being based on one or more characteristics of the one or more data flows, and in response to determining that the data flow is the candidate flow, managing the data flow. A consumption rate, a duration, a number of bytes communicated, a throughput, or aggregated characteristics of the one or more data flows may be used to determine the candidate flow detection threshold.
US11677658B2
Various example embodiments for supporting rerouting of packets in communication networks are presented. Various example embodiments for supporting rerouting of packets in communication networks may be configured to support rerouting of packets based on common node protection. Various example embodiments for supporting rerouting of packets based on common node protection may be configured to support rerouting of source routed packets in packet switched networks. Various example embodiments for supporting rerouting of packets based on common node protection may be configured to support rerouting of source routed packets based on segment routing (SR). Various example embodiments for supporting rerouting of packets based on common node protection may be configured to support rerouting of source routed packets based on SR-Traffic Engineering (SR-TE). Various example embodiments for supporting rerouting of packets based on common node protection may be configured to support fast rerouting (FRR) of source routed packets based on SR-TE.
US11677652B2
A port adaptation method applied to a network device including a port adaptation apparatus includes probing whether the first port and the second port are connected to power sourcing equipment, and maintaining or switching one of the first port and the second port that is connected to power sourcing equipment as, or to, a powered state, and a state of the other port as, or to, a powering state.
US11677644B2
A device may receive information associated with a service chain to be implemented in association with a flow. The information associated with the service chain may include a source network address associated with the flow, a destination network address associated with the flow, a set of protocols associated with the flow, and a set of network services, of the service chain, to be implemented in association with the flow. The device may implement the service chain in association with the flow. The device may receive network traffic information associated with the flow based on implementing the service chain in association with the flow. The device may modify the service chain based on the network traffic information associated with the flow to permit a modified service chain to be implemented in association with the flow.
US11677630B2
Techniques are described for managing devices using multiple virtual personal area networks (VPANs). A border router can receive a first request to join a network from a first device. The first device may be assigned to a first virtual personal area network (VPAN), which has an associated first group temporal key (GTK). The first GTK can be distributed to the first virtual device. The border router can also receive a second request to join a network from a second device. The second device may be assigned to a second VPAN, which has an associated second GTK. The second GTK can be distributed to the second virtual device.
US11677628B2
Topology discovery between compute nodes and interconnect switches including creating, on an interconnect switch, a virtual topology discovery device for a first port, wherein the interconnect switch is coupled to a compute node via the first port, and wherein the virtual topology discovery device comprises a port identifier for the first port; mapping the virtual topology discovery device to the first port; receiving an inventory request from the compute node via the first port; routing the inventory request to the virtual topology discovery device for the first port; and sending, from the virtual topology discovery device for the first port, the port identifier to the compute node.
US11677625B2
A framework for joint computation, caching, and request forwarding in data-centric computing-based networks comprises a virtual control plane, which operates on request counters for computations and data, and an actual plane, which handles computation requests, data requests, data objects and computation results in the physical network. A throughput optimal policy, implemented in the virtual plane, provides a basis for adaptive and distributed computation, caching, and request forwarding in the actual plane. The framework provides superior performance in terms of request satisfaction delay as compared with several baseline policies over multiple network topologies.
US11677621B2
A system, method, and computer-readable medium are disclosed for performing a data center monitoring and management operation. The data center monitoring and management operation includes: identifying a plurality of assets within a data center; monitoring usage of the plurality of assets within the data center; generating data center asset profile data based upon the monitoring; identifying a plurality of asset configurations related to the asset profile data; ranking the plurality of asset configurations based upon the data center asset profile data; and, generating a recommended asset configuration recommendation based upon the ranking.
US11677616B2
In accordance with an embodiment, described herein is a system and method use of a controller with a software application container orchestration system, which is adapted to provide safe and efficient replacement of nodes in a containerized environment. A node replacement controller drives the process of node replacement, and indirectly and asynchronously interacts, through metadata, with an implementation-specific node processor, and application-specific health controller, to discover nodes that should be processed, determine when the application workload is in a stable state, declare those nodes as ready to be processed, and determine when those nodes have finished processing. The node replacement controller can be implemented once for a given type of container orchestration system, and then applied to other container orchestration implementations (vendors) and workload types using that container orchestration system.
US11677614B2
A method, apparatus and system for providing stateful service function paths with redundancy are provided. Multiple instances of a service function path are included, each with at least one instance of a stateful service function. The redundant stateful service functions transmit messages between one another to so that the current state is synchronized. Upon failure of a service function in a first instance of the service function path, packets are redirected to a backup associated with the failed service function located in another instance of the service function path. Once processed by the backup service function, the redirected packets may be routed back to the first instance of the service function path.
US11677610B2
A bidirectional out-of-band management (OOBM) dongle comprises a serial port for receiving console traffic from a console port of a managed switch and an Ethernet port for receiving management port traffic from a management port of the managed switch. In operation, the OOBM dongle multiplexes, via an optional adapter, the console traffic and the management port traffic and generates Ethernet traffic that is then communicated, via an OOBM port on the dongle, to an OOBM switch port of an OOBM switch that acts as a power sourcing device for the OOBM dongle.
US11677609B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of a non-linearity model associated with one or more downlink communications. The UE may receive the one or more downlink communications based at least in part on the non-linearity model. Numerous other aspects are described.
US11677605B2
Certain aspects of the present disclosure provide techniques for generating and decoding orthogonal frequency division (OFDM) waveforms with peak reduction tones (PRTs) designed to reduce PAPR. By generating PRT tones with a machine learning (e.g., neural network) based encoder and mapping some of the PRT tones to subcarriers used for physical channels or signals, PAPR may be reduced while efficiently using system resources.
US11677604B2
Methods, apparatus, and systems for reducing Peak Average Power Ratio (PAPR) in signal transmissions are described. In one example aspect, a wireless communication method includes determining, for an input sequence, an output sequence corresponding to an output of a convolutional modulation between a plurality of values and an intermediate sequence. The intermediate sequence is generated by inserting a set of coefficients between coefficients of the input sequence. Each non-zero coefficient of the set of coefficients is inserted between a first adjacent coefficient and a second adjacent coefficient. Each non-zero coefficient has a power that is between a first power of the first adjacent coefficient and a second power of the second adjacent coefficient and a phase value between a first phase value of the first adjacent coefficient and a second phase value of the second adjacent coefficient. The method also includes generating a waveform using the output sequence.
US11677595B2
A physical layer transceiver, for connecting a host device to a wireline channel medium that is divided into a total number of link segments, includes a host interface for coupling to a host device, a line interface for coupling to the wireline channel medium, and feed-forward equalization (FFE) circuitry operatively coupled to the line interface to add back, into a signal, components that were scattered in time. Respective individual filter segments are selectably configurable, by adjustment of respective delay lines, to correspond to respective individual link segments. The FFE circuitry also includes control circuitry configured to detect a signal energy peak in at least one particular link segment and, upon detection of the signal energy peak in the particular link segment, configure a respective one of the respective individual filter segments, by adjustment of a respective delay line, to correspond to the respective particular link segment.
US11677593B1
Various embodiments provide for a data sampler with built-in decision feedback equalization (DFE) and offset cancellation. For some embodiments, two or more data samplers described herein can be used to implement a data signal receiver circuit, which can use those two or more data samplers to facilitate half-rate or quarter-rate data sampling.
US11677576B2
Systems and methods for establishing relationships between building automation system components and controlling building automation system components. Data for a building automation system components may be received from the building automation system components and one or more models may be applied to the received data to determine types of the building automation system components and relationships between building automation system components. Once the types of building automation system components have been determined or identified, uniform names may be applied to the building automation system components. The received data may include, among other data, naming data and telemetry data from the building automation system components.
US11677574B1
One example method of operation may include identifying one or more errors of a code set executing at a test site, initiating a conference session with one or more devices assigned to manage the test site, receiving one or more modified portions of the code set from the one or more devices, executing the one or more modified portions of the code set to initiate a communication to the test site, and when the modified portions of the code set are free from errors, cancelling the conference session.
US11677573B2
A contactless PoE connection system and a contactless PoE connector for use in the connection system, in which the contactless PoE connector has a first contactless interface configured for bidirectional data transfer, a second contactless interface configured for unidirectional power transfer, and a third interface to which a first Ethernet line can be connected. The third interface is configured to receive data and power, which are to be transferred jointly via the Ethernet line. Furthermore, a data and power splitting device are connected to the first, second, and third interfaces, which splitting device is configured for splitting power and data as applied to the third interface and for selectively supplying data to the first contactless interface and for selectively supplying power to the second contactless interface.
US11677567B2
A computing device may receive a file previously uploaded by another device, and may validate the received file using data including a first value encrypted based on a document (e.g., a digital certificate or identification certificate) of the uploading device. The computing device may determine the validity of the certificate based on a certificate of a remote computing device to which the file was uploaded, and may decrypt the first value using a key of the certificate of the uploading device. The computing device may determine a second value for the received file and may determine validity of the received file based on a match of the first value and the second value.
US11677563B2
Distributed ledger-based networks (DLNs) employ self-executing codes, also known as smart contracts, to manage interactions occurring on the networks, which may result in the generation of a massive amount of DLN state data representing the interactions and participants thereof. The instant disclosure discloses systems, apparatus and methods that allow interactions to occur on the DLNs without modification to stored data, thereby improving the storage capabilities of the networks.
US11677560B2
Disclosed are methods for utilizing a memory device as a security token. In one embodiment, a method includes receiving a request to perform an operation; transmitting a nonce to a memory device; receiving a second nonce from the memory device, the second nonce encrypted using a private key of the memory device; verifying the second nonce using a public key of the device, held by the host system; and executing the operation upon successfully verifying the second nonce.
US11677551B2
One example method includes receiving clear text data at a storage system, generating, at the storage system, a clear text data encryption key, requesting a key management system to encrypt the clear text data encryption key with a master key to create an encrypted data encryption key, and the requesting is performed by the storage system, receiving, at the storage system, the encrypted data encryption key from the key management system, encrypting, at the storage system, the clear text data with the clear text data encryption key to create encrypted data, and storing, together, the encrypted data and the encrypted data encryption key.
US11677548B2
A system is provided for distribution of device key sets over a network in a protected software environment (PSE). In the system, a client device includes a connection interface for receiving a crypto hardware (CH) token belonging to a user, untrusted software, a quoting enclave, and a PSE for generating a provisioning request for a device key set. An attestation proxy server (APS) receives the provisioning message using a first network connection, and transmits the provisioning message to an online provisioning server (OPS) using a second network connection. The OPS constructs a provisioning response and an encrypted device key set, and delivers the provisioning response to the untrusted software using the first and second network connections. The PSE decrypts the encrypted device key set to obtain the device key set, re-encrypts the device key set with a local chip-specific key, and stores the re-encrypted device key set.
US11677535B2
This document describes systems and techniques directed at concurrent communication in multiple time-division duplex (TDD) bands. As new industry standards (e.g., the Fifth Generation New Radio (5G NR) standard) are being implemented, more TDD bands are becoming available for wireless communications. Generally, manufacturers will add additional antenna systems for each TDD band, but this method may become costly and need extra space, which is already limited, within the user device In various aspects, the concurrent communication system includes a radio frequency (RF) modem module configured to operate on multiple TDD bands, which may include bands that are located near each other on the RF spectrum. The concurrent communication system further includes transceiver circuitry with at least one transmission chain and at least four reception chains. The architecture of this system offers an efficient and inexpensive way to communicate on at least two TDD bands concurrently with reduced hardware cost.
US11677532B2
Apparatuses, methods, and systems are disclosed for configuring bandwidth parts. One method includes: receiving a first bandwidth part configuration for a first downlink bandwidth part and a second bandwidth part configuration for a second downlink bandwidth part; receiving an indication to receive downlink signals and channels in the first downlink bandwidth part; identifying a control resource set and a corresponding search space for a type of physical downlink control channel common search space within a bandwidth of the first downlink bandwidth part from the second bandwidth part configuration; monitoring physical downlink control channel candidates on the control resource set; and receiving a physical downlink control channel on the control resource set, wherein the physical downlink control channel includes downlink control information associated with the type of physical downlink control channel common search space.
US11677531B2
Methods, systems, and devices for wireless communications are described. In some examples, a wireless communications system may support group channel quality indicator (CQI) reporting. For example, a user equipment (UE) may receive, from a base station, signaling indicating a group of component carriers (CCs) and one or more subbands within the group of CCs. The UE may receive one or more reference signals within the one or more subbands and determine a group CQI index corresponding to the group of CCs based at least in part on the one or more reference signals. The UE may then transmit a report to the base station indicating the group CQI index and the base station may determine a CQI index for each of the one or more subbands based on the group CQI index.
US11677523B2
The present disclosure discloses an information feedback method, an apparatus and a storage medium. The method includes: receiving, by a first terminal, N groups of reference signals sent by a second terminal, N being a positive integer, where transmission resources of the reference signals of different groups are in a pattern of time division; selecting, by the first terminal, a target reference signal based on the received N groups of reference signals; and sending, by the first terminal, index information of the target reference signal to the second terminal, where the index information is carried in a feedback channel.
US11677519B2
Wireless communications systems and methods related to sidelink communications in a shared radio frequency band are provided. A first user equipment (UE) receives, from a base station (BS), a configuration for frequency-interlaced resources in a shared radio frequency band for sidelink communication between the first UE and a second UE. The first UE communicates, with the second UE, the sidelink communication using the frequency-interlaced resources.
US11677518B2
A receiver is configured to detect a plurality of signals on a plurality of subbands over a communication channel that operates on a shared or an unlicensed spectrum. Additionally, the receiver is configured to perform joint correlation over a time domain and a frequency domain of each successive signal of the plurality of signals. Moreover, the receiver is configured to determine a sequence based on the joint correlation. Additionally, the receiver is configured to decode transmission information from the sequence.
US11677517B2
A communication method of the present disclosure comprises transmitting a sounding frame comprising a training signal; and receiving a first feedback frame from a communication partner device, the first feedback frame comprising first beamforming feedback information, wherein the first feedback frame is transmitted together with at least one second feedback frame by multiuser transmission.
US11677515B2
A communication device (101) transmits data by switching types of data to be transmitted by a unit of a time slot. A data transmission unit (6) transmits transmission data during a time slot corresponding to a type of the transmission data. Further, the data transmission unit (6) decides a retransmission time for performing a retransmission of the transmission data based on a time when a transmission of the transmission data has been completed.
US11677502B2
A transmitter for transmitting data to communications devices via a wireless access. The transmitter including modulator circuitry configured to receive modulation symbols of a segment and to rotate each modulation symbol by an angle dependent on a choice of modulation scheme, and receive each of the segments of rotated modulation symbols and for each segment to separate real and imaginary components of the rotated modulation symbols for the segment and to interleave the real components of the rotated modulation symbols of the segment differently to the imaginary components of the rotated modulation symbols of the segment. The circuitry also is configured to recombine the real and imaginary interleaved components of the rotated modulation symbols of each segment and to form from the real and imaginary components modulation cells.
US11677493B2
A communication system for providing predictive adaptive coding and modulation (ACM) during transmission between terminals is provided. One or more receiving terminals are adapted for detecting changes in a transmission rate and automatically adapting its demodulation to the changes. A transmitting terminal is adapted for transmitting data to the one or more receiving terminals using predictive ACM by selecting channel parameters from a lookup table without receiving channel parameters over a return link from the one or more receiving terminals. The channel parameters may be at least one of a channel symbol rate, a code type, and a frequency.
US11677486B2
A network device may receive a timing control packet from a first client device. The network device may determine that the network device is in a synchronized state relative to a network grandmaster clock. The network device may modify a first field of a header of the timing control packet to indicate that the network device is in a synchronized state. The network device may modify a second field of the header of the timing control packet to indicate a time at which the network device received the timing control packet from the first client device. The network device may forward, via the network, the timing control packet toward a second client device.
US11677485B2
In certain aspects, the present disclosure is related to devices, methods, systems and/or computer-readable media for use in an isochronous media network in which media devices connected to a network employ one or more synchronization signal to regulate or facilitate the transmission of media signals through the network. In certain aspects, the present disclosure is also related to devices, methods, systems and/or computer-readable media for use in a larger unified, or substantially unified, isochronous network created from aggregating local isochronous media networks in which media devices connected to a network employ a one or more synchronisation signal distributed from a local master clock to regulate or facilitate the transmission of media signals.
US11677483B2
A method and an apparatus for receiving broadcast signals thereof are disclosed. The apparatus for receiving broadcast signals, the apparatus comprises a receiver to receive the broadcast signals, a demodulator to demodulate the received broadcast signals by an OFDM (Orthogonal Frequency Division Multiplex) scheme, a frame parser to parse a signal frame from the demodulated broadcast signals, wherein the signal frame includes service data corresponding to each of a plurality of physical paths, a time deinterleaver to time deinterleave service data in each physical path by a TI (Time Interleaving) block, wherein the time deinterleaver further performs inserting at least one virtual FEC block into at least one TI block of the service data, wherein each TI block includes a variable number of FEC blocks of the service data, wherein a number of the at least one virtual FEC block is defined based on a maximum number of FEC blocks of a TI block and a decoder to decode the time deinterleaved service data.
US11677473B2
Hybrid wire-fiber data networks that include wire-fiber transceivers protected against environmental interferences. In some embodiments, a hybrid-wire-fiber data network of this disclosure provides a fiber-optic link between portions of one or more wired networks. In some embodiments, a hybrid wire-fiber data network of this disclosure includes a fiber-optic link that relies only on message-priority arbitration performed on wired portions of one or more wired networks. In some embodiments, a wire-fiber transceiver of this disclosure includes electromagnetic environment (EME) protective circuitry for one or both of input power and input signals. In some embodiments, a wire-fiber transceiver of this disclosure is configured for use with a controlled area network media-access protocol (CAN) and/or a derivative of CAN. Various data communication and other methods are also disclosed in addition to hybrid wire-fiber data networks and components thereof.
US11677459B2
An enhanced L-band Digital Aeronautical Communications System (LDACS) may include LDACS ground stations, and LDACS airborne stations configured to communicate with the LDACS ground stations. The enhanced LDACS may also include a Cloud-based network controller configured to allocate LDACS resources to the LDACS ground stations and the LDACS airborne stations based upon a number of LDACS airborne stations, respective flight paths of each LDACS airborne station, a respective type of each LDACS airborne station, and historical data on communication use for each LDACS airborne station.
US11677458B2
Methods and apparatuses for controlling radio resources of radio units in air-to-ground mobile communications systems that include at least an aircraft carrying a transceiver station and a ground basestation, apt to communicate with each other. The radio units are provided with beamforming and/or massive MEM antenna systems, and are controlled by the apparatuses using control data. The apparatuses are configured to receive flight data related to the aircraft, estimate a timed trajectory and a required data rate, as a function of the flight data. Then the apparatuses determine a sequence of control data for said antenna systems to form radio beams and/or connectivity spots directed towards said transceiver station, respectively to the ground basestation, while the allocated data rate is at least equal to the required data rate. The sequence of control data is then provided to respective antenna systems.
US11677454B2
Various aspects of the present disclosure relate to beam management procedures in wireless communications systems. Some implementations of the present disclosure more specifically provide techniques for reporting measurements for proposed beams (such as beams predicted to be the best beams for communications to and from a UE and a network entity) and other beams detected by the UE. The techniques may be used, for example, to identify mismatches between a proposed set of beams and actual best beams for communications to and from a UE and a network entity and allow for the retraining of machine learning models used to identify the proposed set of beams for communications to and from a UE and a network entity.
US11677450B2
A system, in a programmable active reflector (AR) device associated with a first radio frequency (RF) device and a second RF device, receives a request and associated metadata from the second RF device via a first antenna array. Based on the received request and associated metadata, one or more antenna control signals are received from the first RF device. The programmable AR device is dynamically selected and controlled by the first RF device based on a set of criteria. A controlled plurality of RF signals is transmitted, via a second antenna array, to the second RF device within a transmission range of the programmable AR device based on the associated metadata. The controlled plurality of RF signals are cancelled at the second RF device based on the associated metadata.
US11677445B2
An electronic apparatus includes transmitter circuitry configured to transmit a first association request frame to a first electronic apparatus; and receiver circuitry configured to receive a first association response frame corresponding to the first association request frame from the first electronic apparatus, and to receive a second association request frame from the first electronic apparatus.
US11677441B2
A power line communication system (200) comprising a first node (202) and a second node (204). The first node (202) comprises a second-node-connection-terminal (206); a first-node-transmission-module (208) that provides a first-node-output-signal (210) to the second-node-connection-terminal (206); and modulates the voltage level of the first-node-output-signal based on first-node-transmission-data. The second node (204) comprises a second-node-input-voltage-terminal (214) that is connected to the second-node-connection-terminal (206) of the first node (202) in order to receive the first-node-output-voltage-signal (210). The second node (204) is configured to use the first-node-output-voltage-signal (218) as a supply voltage. The second node (204) also includes a second-node-transmission-module (216) that: provides a second-node-current-signal (218) to the second-node-input-voltage-terminal (214) for transmission to the second-node-connection-terminal (206) of the first node (202); and modulates the current level of the second-node-current-signal (218) based on second-node-transmission-data. The second node (204) also includes a second-node-reception-module (222) that is configured to process the voltage level of the received first-node-output-signal (210) in order to demodulate the first-node-transmission-data. The first node (202) further comprises a first-node-reception-module (226) that processes the current level of the second-node-current-signal (218) received from the second node (204) at the second-node-connection-terminal (206) in order to demodulate the second-node-transmission-data.
US11677440B2
Method and system are provided for power path identification in a power distribution system. The method transmits a data signal through a power line infrastructure including adding an identifier value at multiple points of the infrastructure to the data signal to form a concatenated path identifier formed of the identifier values. The method reads the path identifier at a reading point of the infrastructure to obtain power path information to or from the reading point in the power line infrastructure. A system may include a plurality of path identification devices each provided at a connection point of the power distribution system to transmit connection point identifiers to form a concatenated path identifier with identifier values of other connection points.
US11677424B1
A method, system, and apparatus for applying dithering to waveforms in a transmitter such as a Bluetooth transmitter. A current waveform corresponding to a current bit of a bitstream is received where the current waveform has a nominal frequency deviation defined by a value of the current bit. Based on the determination that the current waveform and an immediately previous bit of the bitstream are associated with different bit values, a first dithered signal is output which is defined by a first frequency offset pseudorandomly selected from a first set of frequency offsets. A subsequent waveform to the current waveform is received corresponding to a subsequent bit of the bitstream. Based on the subsequent bit and the current bit being associated with bits of the same value, a second dithered signal is output which is defined by a second frequency offset pseudorandomly selected from a second set of frequency offsets.
US11677421B2
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 64800 and a code rate of 7/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for quadrature phase shift keying (QPSK) modulation.
US11677405B2
A plurality of Phase Locked Loops, PLL (12, 14), are distributed across an Integrated Circuit, each receiving a common reference signal (A). A local phase error (B) of each PLL (12, 14) is connected to a phase error averaging circuit (16), which calculates an average phase error (C), and distributes it back to each PLL (12, 14). In each PLL (12, 14), two loop filters (20, 22) with different bandwidths are deployed. A lower bandwidth, high DC gain, common mode loop operates on the average phase error, and forces the PLL outputs (H) to track the phase of the common reference signal. A high bandwidth, difference mode loop operates on the difference between the local phase error (B) and the average phase error (C) to suppress phase differences between PLL outputs, minimizing interaction between them. The reference noise contribution at the output is controlled by the common mode loop, which can have a low bandwidth. The reference noise contribution and oscillator interaction suppression are thus independently controlled.
US11677396B2
Hybrid power switching stages and driver circuits are disclosed. An example semiconductor power switching device comprises a high-side switch and a low-side switch connected in a half-bridge configuration, wherein the high-side switch comprises a GaN power transistor and the low-side switch comprises a Si MOSFET. The Si—GaN hybrid switching stage provides enhanced performance, e.g. reduced switching losses, in a cost-effective solution which takes advantage of characteristics of power switching devices comprising both GaN power transistors and Si MOSFETs. Also disclosed is a gate driver for the Si—GaN hybrid switching stage, and a semiconductor power switching stage comprising the gate driver and a Si—GaN hybrid power switching device having a half-bridge or full-bridge switching topology.
US11677373B2
The present invention includes a method of making a RF impedance matching device in a photo definable glass ceramic substrate. A ground plane may be used to adjacent to or below the RF Transmission Line in order to prevent parasitic electronic signals, RF signals, differential voltage build up and floating grounds from disrupting and degrading the performance of isolated electronic devices by the fabrication of electrical isolation and ground plane structures on a photo-definable glass substrate.
US11677367B2
A power amplifier circuit includes a power splitter, a first amplifier configured to output a first amplified signal from a first output terminal, and a second amplifier configured to output a second amplified signal from a second output terminal. The power amplifier circuit further includes a first termination circuit connected between the first output terminal and the second output terminal, a first transmission line, a second transmission line, a second termination circuit connected between another end of the first transmission line and another end of the second transmission line, and a power combiner.
US11677362B2
RF transistor amplifiers are provided that include a submount and an RF transistor amplifier die that is mounted on top of the submount. A multi-layer encapsulation is formed that at least partially covers the RF transistor amplifier die. The multi-layer encapsulation includes a first dielectric layer and a first conductive layer, where the first dielectric layer is between a top surface of the RF transistor amplifier die and the first conductive layer.
US11677354B2
Circuits and processes for locking a voltage-controlled oscillator (VCO) at a high frequency signal are described. A circuit may include an adjustable current converter (ACC), coupled at an input terminal to a power source, operable to output a control signal (VC) at an output terminal. A first switch may be coupled to the ACC and to the VCO. The VCO, when in an “ON” state, receives the control signal and outputs a high frequency signal (VHF). A digital filter may be coupled to the VCO and operable to receive the VHF. Based on the VHF, the digital filter generates a data signal having a data value. The circuit may also include a digital-to-analog converter (DAC) operable to receive the data signal and, based on the data value, output an adjustment signal to the ACC. The ACC may adjust the control signal based on the adjustment signal received from the DAC.
US11677338B2
A circuit for generating electrical energy is disclosed. The circuit uses a pulse generator in combination with a conductor. Waste heat can be converted to usable energy due to a cooling effect of the circuit on the conductor. A resultant energy applied to a load is larger than the energy supplied by the pulse generator due to the absorption of external energy by the conductor.
US11677334B2
The present invention discloses a modular intelligent combined wind power converter and a control method thereof. The modular intelligent combined wind power converter comprises separate bridge arm power units, wherein a plurality of the bridge arm power units are connected in parallel to form a high-capacity bridge arm power module, three bridge arm power modules form a three-phase full-controlled bridge power module, and the three-phase full-controlled bridge power module comprises an electric reactor, a capacitor, a fuse and a circuit breaker to form a basic converter module, and the basic converter module forms a high-capacity wind power converter through a modular intelligent combination method.
US11677311B2
In a method for operating a controllable converter with an intermediate circuit capacitor, the control behavior can be improved by transmitting, depending on an intermediate circuit voltage applied to the intermediate circuit capacitor, an additional power component via the controllable converter such that the electric current that is generated by the controllable converter for the additional power component counteracts an oscillation of the intermediate circuit voltage. The additional power component is transmitted by the controllable converter to a connected motor as a pulsating additional torque. Also described is a controllable converter with a control unit for carrying out a method, wherein the controllable converter has semiconductors that can be switched off, and an intermediate circuit capacitor designed as a film-type capacitor.
US11677310B2
A power converting apparatus includes a diode bridge that converts first AC power supplied from a power supply into DC power, a main circuit capacitor that smooths the DC power, one or more capacitors that reduces a noise component included in the first AC power, and a path switch. The path switch switches a charging path for the main circuit capacitor so that current output from the AC power supply flows into the main circuit capacitor via the capacitor(s) from when supply of the first AC power starts until a voltage of the main circuit capacitor reaches a predetermined voltage, and that the current output from the AC power supply flows into the main circuit capacitor without bypassing the capacitor(s) after the voltage of the main circuit capacitor reaches the predetermined voltage.
US11677294B2
A power unit structure for a vehicle includes a motor disposed in a power unit room of the vehicle and configured to transmit a driving force to drive wheels of the vehicle, an electric power converter disposed in the power unit room of the vehicle, and an electric power distributor disposed in the power unit room of the vehicle. The electric power converter is configured to convert supplied electric power into electric power to be supplied to the motor and is disposed on an upper side of the motor. The electric power distributor is configured to distribute electric power supplied from a power supply to the electric power converter and is disposed at a position where at least a part of the electric power distributor overlaps the electric power converter in an up-down direction of the vehicle when viewed from a vehicle front-rear direction or a vehicle width direction.
US11677293B2
An internal combustion engine to electric motor conversion system for a work machine is provided. The electric motor conversion system is sized to substantially conform to a footprint of the internal combustion engine on the work machine. The electric motor conversion system includes an electric motor, a power distribution unit and a connecting bracket. The electric motor is configured for direct mounting on a frame of the work machine. The power distribution unit is separate from and positioned atop the electric motor. The power distribution unit controls operation of the electric motor. The connecting bracket is separate from the electric motor and power distribution unit. The connecting bracket includes a base, first attachment elements extending from a lower surface of the base for attachment to the electric motor, and second attachment elements extending from an upper surface of the base for attachment to the power distribution unit.
US11677292B2
Systems are provided for an electric motor housing. In one example, a system comprising a phase connection enclosure comprising a bus bar assembly sealed between a motor lead and a plurality of phase cable connections. The phase connection enclosure is integrally arranged within a cooling jacket of the electric motor housing.
US11677276B2
There are provided a method and a device for feeding electric power to a vehicle, etc. installed with a solar photovoltaic power generation panel employing a multi-junction solar cell in a non-contact manner by irradiating light to the solar photovoltaic power generation panel. In the method, light containing a wavelength component absorbed by each of all solar cell layers laminated in a multi-junction solar cell of the vehicle, etc. is projected from a light-projecting device to the light receiving surface of the multi-junction solar cell; and electric power generated by the irradiation of light from the multi-junction solar cell is taken out. The device includes structures for emitting light containing a wavelength component absorbed by each solar cell layer laminated in the multi-junction solar cell, and for irradiating the light to a light receiving surface of the multi-junction solar cell.
US11677269B2
Hybrid energy harvesting devices that harvest vibrational energy over a broad frequency spectrum using several different energy harvesting mechanisms that are operable over different frequency ranges. In one embodiment, a device uses an inductive current generator to convert vibrational energy at lower frequencies to electrical energy, and also uses one or more piezoelectric charge generators to convert vibrational energy at higher frequencies to electrical energy. The electrical energy produced by these different mechanisms is provided to a controller which processes the input energy and generates an output which is applied to an energy store such as a battery. The energy stored in the battery can then be drawn by a wireless sensor or other device. The energy harvesting device may have the same form factor as a conventional battery to allow installation in battery-powered equipment without modification.
US11677268B2
An intelligent electronic device (IED) includes memory and a processor operatively coupled to the memory. The processor is configured to establish, over a communication network of a power system, a connection association (CA) with a receiving device using a MACsec Key Agreement (MKA). The processor is configured to automatically send an announce message indicating a set of enabled application protocols on the IED to the receiving device.
US11677259B2
Various embodiments described herein use a set of capacitor sets (e.g., capacitor banks) in a power backup architecture for a memory sub-system, where each capacitor set can be individually checked for a health condition (e.g., in parallel) to determine their respective health after the memory sub-system has completed a boot process. In response to determining that at least one capacitor set has failed the health condition (or a certain number of capacitor sets have failed the health condition), the memory sub-system can perform certain operations prior to primary power loss to the memory sub-system (e.g., preemptively performs a data backup process to ensure data integrity) and can adjust the operational mode of the memory sub-system (e.g., switch it from read-write mode to read-only mode).
US11677255B1
A wireless power transmitter can include a coil, an inverter coupled to the coil, and control circuitry coupled to the inverter that, responsive to receiving a burst request pulse from a wireless power receiver, initiates inverter operation, driving the coil and powering the receiver. The control circuitry can operate inverter switches so bandwidth of the wireless power transfer signal falls within a specified range by: (a) extending a minimum on time of the switches, (b) modifying pulse width modulation (PWM) drive signals supplied to the switches to shape a coil current burst envelope, and/or (c) modifying PWM signal amplitude supplied to the switches. Modifying the PWM drive signals can include using a symmetrical PWM scheme in which the positive and negative pulses are symmetrical in width on a cycle-by-cycle basis or using a complementary PWM scheme in which the positive and negative pulse widths are complementary on a cycle-by-cycle basis.
US11677253B2
A monitoring device includes: an acquisition unit configured to acquire information regarding whether a learning model is in a first mode or in a second mode, the learning model configured to detect a state of an energy storage device; and a change unit configured to change an operation of a balancer circuit from a predetermined state in a case where the learning model is in the first mode, the balancer circuit configured to balance a voltage of the energy storage device.
US11677247B2
A method for regulating a decentralized energy generating system with a plurality of inverters (IN) is disclosed. The method includes receiving at the PPC a detected active power, reactive power and voltage amplitude at a grid connection point (PCC) of the energy generating system; and regulating, in a normal operating mode of the energy generating system, the reactive power and the active power to target values stipulated by a grid operator by virtue of the central control unit (PPC) dividing the stipulated target values into individual target stipulations for the plurality of inverters (IN) and communicating individual target stipulations to the inverters (IN). The method further includes selectively changing to a special operating mode of the energy generating system if particular criteria are present at the grid connection point (PCC) in a stipulated time interval. In the special operating mode, the central control unit (PPC) effects a reduction of the active power provided at the grid connection point (PCC) compared to the stipulated target values.
US11677246B2
A power management method comprises a step A of specifying a charging power supply used for charging of a storage battery apparatus, a step B of monitoring a storage capacity of the storage battery apparatus, and a step C of limiting, until the storage capacity becomes a predetermined threshold or less, the charging of the storage battery apparatus which uses a second charging power supply different from a first charging power supply when the charging power supply is the first charging power supply.
US11677243B2
A method for operating an appliance on a power grid operated by a utility is described. The method includes receiving, at a server associated with the utility, information indicating whether a person is present in a proximity of the appliance, determining, by the server, an operational state of the appliance based on whether the person is present in the proximity of the appliance, and transmitting to the appliance, via a communication link associated with the power grid, control information related to the operational state to control operation of the appliance. Related methods, devices and systems are described.
US11677237B2
A gate driver integrated circuit includes a high-side region that operates in a first voltage domain according to a first pair of supply terminals that include a first lower supply terminal and a first higher supply terminal; a low-side region that operates in a second voltage domain according to a second pair of supply terminals; at least one termination region that electrically isolates the high-side region from the low-side region; a first electrostatic device arranged in the high-side region and connected to the first pair of supply terminals; a second electrostatic device arranged in the low-side region and connected to the second pair of supply terminals; and a third electrostatic device connected to a lower supply terminal of the first pair of supply terminals and is coupled in series with the first electrostatic device.
US11677236B2
A device for discharging a capacitor includes a resistive component having a resistance value selectable from among at least three resistance values. The device is configured to be connected in parallel with the capacitor. A circuit operates to select the resistance value of the resistive component.
US11677235B2
A device, system and method protects from overvoltages. A power control device includes a component (310) configured to be powered according to a duty cycle. The power control device includes a controller (330) configured to determine the duty cycle that places the component on or off. The power control device includes a comparator (335) configured to determine when the duty cycle is off and an overvoltage is being experienced by the component. When the duty cycle is off and the overvoltage is being experienced by the component, the comparator selects a circuit pathway (345, 350) including a clamping device (350).
US11677232B2
A circuit protection system is provided herein that minimizes the disconnection time of a circuit while protecting other electrical components. Some configurations comprise a set of parallel circuit interruption devices, each connected in series with respective fuses. A control device sets a state of the circuit interruption device based on a current of the circuit. Under certain current loads, the circuit is interrupted without causing a fuse to blow. Under other current loads, the circuit is interrupted by having one or more fuses blow.
US11677230B2
An apparatus includes a magnetometer-based current sensor (e.g., a Hall-effect or fluxgate-based current sensor) configured to sense a magnetic field generated by a current in at least one conductor connecting a motor drive output to a motor and to responsively produce a first current sense signal and a magnetometer-based voltage sensor (e.g., a Hall-effect or fluxgate-based voltage sensor) configured to sense a magnetic field generated in response to a voltage of the at least one conductor and to responsively produce a first voltage sense signal. The apparatus further includes a signal conversion circuit configured to receive the first current sense signal and the first voltage sense signal and to generate a second current sense input and a second voltage sense input for provision to a current sense input and a voltage sense input, respectively, of a motor protection relay that protects the motor.
US11677215B2
Structures for response shaping in frequency and time domain, include an optical response shaper and/or a modulator device with multiple injection. The device comprises a resonator having an enclosed geometric structure, for example a ring or racetrack structure, at least two injecting optical waveguides approaching the resonator to define at least two coupling regions between the resonator and the injecting waveguides, and may define at least two Free Spectral Range states.
One or both of the coupling regions has a coupling coefficient selected for a predetermined frequency or time response, and the coupling coefficient or other device parameters may be variable, in some case in real time to render the response programmably variable.
US11677214B2
The present disclosure relates to a diode laser having reduced beam divergence. Some implementations reduce a beam divergence in the far field by means of a deliberate modulation of the real refractive index of the diode laser. An area of the diode laser (e.g., the injection zone), may be structured with different materials having different refractive indices. In some implementations, the modulation of the refractive index makes it possible to excite a supermode, the field of which has the same phase (in-phase mode) under the contacts. Light, which propagates under the areas of a lower refractive index, obtains a phase shift of π after passing through the index-guiding trenches. Consequently, the in-phase mode is supported and the formation of the out-of-phase mode is prevented. Consequently, the laser field can, in this way, be stabilized even at high powers such that only a central beam lobe remains in the far field.
US11677213B1
A monolithically integrated optical device. The device has a gallium and nitrogen containing substrate member having a surface region configured on either a non-polar or semi-polar orientation. The device also has a first waveguide structure configured in a first direction overlying a first portion of the surface region. The device also has a second waveguide structure integrally configured with the first waveguide structure. The first direction is substantially perpendicular to the second direction.
US11677210B2
A semiconductor laser module that includes a package accommodating therein a plurality of optical components, includes: a semiconductor laser device that emits laser light toward one end side in the package; an optical fiber having an incident end of the laser light on another end side in the package, the another end being in an opposite direction of an emission direction in which the semiconductor laser device emits the laser light; and a turn-back unit that turns back the laser light toward the another end side in the package, the another end being in the opposite direction of the emission direction in which the semiconductor laser device emits the laser light, and outputs the laser light to the incident end of the optical fiber.
US11677208B2
An optical amplification device includes a first Raman amplifier outputs a first excitation light to a transmission line in a same direction as a signal light, and a second Raman amplifier outputs a second excitation light to the transmission line in an opposite direction to the signal light. The first Raman amplifier includes a first detector detects a first power of a first transmitted light transmitted through a first optical filter. The second Raman amplifier includes a second detector detects second power of a second transmitted light transmitted through a second optical filter. The first Raman amplifier stops output of the first excitation light when the first power is higher than a threshold. The second Raman amplifier stops output of the second excitation light when the second power is reduced from power of the first excitation light transmitted through the second optical filter.
US11677207B2
A fiber optic ring laser, and non-transitory computer readable medium for using a fiber optic ring laser are disclosed. The disclosed fiber optic ring laser includes a semiconductor booster optical amplifier (BOA), as a gain medium; a Fiber Fabry Perot Tunable Filter (FFP-TF), as a wavelength selection element; an optical isolator (ISO) to insure unidirectional operation of the fiber optic ring laser; and a polarization controller (PC) for attaining an optimized polarization state in order to achieve a stable-generated output in terms of output power and wavelength, wherein the BOA, the FFP-TF, the ISO and the PC are coupled to form a ring configuration that implements a continuously tunable booster amplifier-based fiber ring laser.
US11677206B2
Embodiments of the microwave amplification system are described. In an embodiment, a microwave amplification system includes a microwave amplifier that contains a paramagnetic material with an impurity. The impurity has a plurality of nuclear spin and electron spin-based energy levels. The system includes an input to receive a pumping signal which is transmitted to the microwave amplifier to cause a population inversion in the impurity and excite it to one of the nuclear spin and electron spin-based energy levels. The system further includes another input to receive an input signal to be amplified by the microwave amplifier, the input signal having a lower power than the pumping signal. Once transmitted to the microwave amplifier, the input signal is amplified by the excited state of the impurity in the microwave amplifier thereby generating an amplified signal.
US11677205B2
An inter-device cabling movement system includes a base and a plurality of cable attachment devices that extend from the base in a port identification sequence. Each of the plurality of cable attachment devices includes a cable engagement element that is configured to engage a respective cable, and a cable securing element that is configured to secure the cable engagement element to the respective cable. The cable engagement elements and cable securing elements may be utilized to secure each cable attachment device to respective cables connected to first ports on a first device so that those respective cables may be disconnected from the first pots on the first device and reconnected to second ports on a second device based on the port identification sequence.
US11677204B2
A wire termination apparatus for terminating an electrical terminal to a wire or cable include an upper tooling member which is movable between an open position and a closed position. A lower tooling member is attached to a base member of a frame of the wire termination apparatus. A process analyzer determines if a crimped terminal is properly crimped to a wire or cable. If the process analyzer determines that the terminal has not been properly crimped to the wire cable, the removal of the defectively crimped terminal and wire or cable from the wire termination apparatus is prevented until a code or key is entered.
US11677203B2
A compression die configured to crimp a composite core is disclosed. The compression die includes an outer body having a tool engaging surface, and an inner body coupled to the outer body. The inner body has a crimping area, wherein the crimping area of the inner body includes ten planar surfaces. The ten planar surfaces are positioned at an angle with respect to an adjacent planar surface such that the combination of the ten planar surfaces form a decagon shaped channel. Crimping is performed by the compression die by inserting the composite core into an encasing connector, which is then inserted into the decagon shaped channel of the compression die. A radial force towards the center of the decagon shaped channel is applied until an outer circumference of the encasing connector containing the composite core fully engages a surface area of each of the ten planar surfaces.
US11677193B2
A power strip assembly for facilitating electrical devices plugged into a power strip to be individually turned on and off includes a power strip that is longitudinally elongated and a plurality of banks of female electrical outlets integrated into the power strip. A plurality of power switches is each movably coupled to the power strip. Each of the power switches is in electrical communication with a respective one of the banks of female electrical outlets for turning the respective banks of female electrical outlets on and off. In this way the plurality of power switches can turn off respective electrical devices plugged into the power strip while leaving respective electrical devices plugged into the power strip turned on.
US11677183B2
A power transfer system includes a port panel assembly including a port panel, a locating pocket formed in the port panel, locking ports arranged in the locating pocket, and terminal assemblies attached to a rear side of the locating pocket and having conductive terminals, and a power transfer assembly having a transfer housing with access ports and terminal retainers, latches housed in the transfer housing to engage the locking ports, a spring arranged between the latches and pressing the latches to protrude outwardly from the transfer housing through the access ports, and connection members arranged in the terminal retainer and adapted be connected to an electric device. When the power transfer assembly is inserted into the port panel assembly, tip portions of the latches are inserted into the locking ports to be secured to the port panel assembly, and the connection members contact the conductive terminals of the port panel.
US11677182B2
A cable connector relates to a field of cable connecting technology. The cable connector includes a main body assembly including an insulating main body and conductive main bodies, a first clamping assembly, and a second clamping assembly. The conductive main bodies are disposed on the insulating main body. Two ends of each of the conductive main bodies extend outwards from bottom portions of the first accommodating groove and the second accommodating groove. The two ends of each of the conductive main bodies are sharp structures. The first clamping assembly includes a first clamping piece movably disposed up and down in the first accommodating groove and a first operating piece disposed on the insulating main body. The second clamping assembly includes a second clamping piece movably disposed up and down in the second accommodating groove and a second operating piece disposed on the insulating main body.
US11677179B2
A sealable FFC connector includes a housing, a plurality of contacts, a sealing member, and an actuator. The housing includes a slot configured to receive a mating component. The contacts are held in the housing and are configured to be in electrical contact with the mating component when the mating component is in a mated position in the slot. The sealing member includes at least a portion supported by the housing. The actuator is coupled to the housing and is movable from an opened position, in which the mating component may be inserted in the slot, to a closed position, in which a biasing force is applied on the sealing member such that, when the mating component is in the mated position in the slot, the sealing member provides a seal to prevent moisture and debris from entering the slot.
US11677176B2
Provided is a connector capable of allowing a counter connector to be properly fitted with the connector. The connector of the invention includes a frame provided with an opening and is capable of allowing a counter connector to be fitted in an inside of the frame through the opening, and the frame includes a lateral wall that extends in a fitting direction and that surrounds the counter connector being fitted with the connector, and a guide portion that is provided at an end portion of the lateral wall on an opening side where the opening is situated in the fitting direction and that guides the counter connector to an inside of the frame. The lateral wall is continuous over an entire circumference of the frame, and the guide portion is provided at the end portion of the lateral wall on the opening side over the entire circumference of the frame.
US11677151B2
One example discloses a near-field device, including: a near-field magnetic antenna, including a coil, configured to receive or transmit near-field magnetic signals; a near-field electric antenna configured to receive or transmit near-field electric signals; and a set of electrical components, electrically coupled to the near-field magnetic antenna and the near-field electric antenna; wherein at least one of: the coil of the near-field magnetic antenna, or a conductive surface of the near-field electric antenna, forms a boundary around the set of electrical components.
US11677141B2
Base station antennas, and components for base station antennas, such as reflectors, feeder components, frames, and column components. A base station antenna may include a reflector; a first radiator located at the front side of the reflector; mutually parallel first and second ground plates extending backward from the reflector and basically perpendicular to the reflector; and a first conductor strip extending between the first and second ground plates and configured to feed power to the first radiator. The first conductor strip and the first and second ground plates may be configured as a first stripline transmission line. The reflector and the first and second ground plates may be configured as one piece so that the reflector is grounded via the first and second ground plates without soldering.
US11677137B2
An electronic device is provided, including a housing, a first slot, a second slot, and a circuit board. The first and second slots are formed on the housing and spaced apart from each other. The circuit board is disposed in the housing and includes a first antenna structure and a second antenna structure. The first antenna structure has a Z-shaped conductive body, and the second antenna structure includes a microstrip portion and a base portion. The base portion is electrically connected to the conductive body, and the microstrip portion is spaced apart from the base portion.
US11677129B2
A microwave circulator including an integrated circuit having a number of ports and a respective ring segment coupled to each port to allow microwave frequency signals to be transferred between the port and the respective ring segment. The circulator includes multiple respective ring segments arranged to define multiple parallel circulator rings and at least one superconducting tunnel junction interconnecting each pair of adjacent ring segments and/or a plurality of superconducting tunnel junctions interconnecting each pair of adjacent ring segments to form a circulator ring. The ring segments are configured so that when a bias is applied to the tunnel junctions, signals undergo a phase shift as they traverse the tunnel junctions between ring segments, thereby propagating signals to an adjacent port in a propagation direction.
US11677125B2
The present disclosure relates to a battery cell to alleviate the problem of impurities falling into an electrode assembly. Wherein, the battery cell includes: an electrode assembly including a tab and a cell body, wherein the tab is connected to the cell body; a cover plate assembly including an electrode terminal and a cover plate, wherein the electrode terminal is disposed on the cover plate; a connecting sheet connected between the tab and the electrode terminal, the connecting sheet includes a first connecting portion and a second connecting portion, wherein the first connecting portion is connected to the tab, and the second connecting portion is connected to the electrode terminal; an insulating pallet disposed between the cell body and the connecting sheet; and an insulation member disposed between the insulating pallet and the second connecting portion.
US11677121B2
The disclosure relates to a technical field of batteries, and in particular, relates to a battery pack. The battery pack includes a box body, a beam, a battery apparatus, and an electrical support base. The beam is disposed in the box body. The battery apparatus is disposed in the box body, and an electrical conductor is disposed on the battery apparatus. The electrical support base is disposed on the beam. The electrical conductor extends from the battery apparatus to the electrical support base and is connected to the electrical support base.
US11677118B2
A battery cell module configured to be at least partially located within a housing of a battery pack. The battery cell module includes a frame. The frame includes a first frame half and a second frame half. The first frame half and the second frame half define a battery cell compartment for receiving a battery cell. The first frame half includes a first end wall and a wedge member affixed to the first end wall. The wedge member includes a first wedge portion and a second wedge portion. The first wedge portion and the second wedge portion define a post opening. The second frame half includes a second end wall and a post affixed to the second end wall at a first end of the post. The post is configured to be inserted into the post opening of the wedge member.
US11677113B2
A battery pack assembly (1) comprising two holding frames (3), wherein the two holding frames (3) hold a plurality of cells (2) between them, each cell (2) being held longitudinally between the two holding frames (3), wherein two or more of the plurality of cells (2) are connected by a conductive means (7), and wherein the two holding frames (3) are reversibly held together by a fastening means (10), wherein the fastening means (10) cause terminals of the cells (2) to be urged against the conductive means (7) and removal or loosening of the fastening means (10) enables the cells (2) to be freed from the assembly (1), at least one holding frame (3) comprising one or more elastomeric protrusions (6) and wherein the conductive means (7) are positioned such that parts of them lie between one or more elastomeric protrusions (6) and one or more cell terminals, such that the urging of the frames (3) together by the fastening means (10) causes the conductive means (7) to be urged into contact by the elastomeric protrusions (6) with said one or more terminals.
US11677108B2
A film-covered battery includes a coverage case having a film covering material and a power generation element contained in the coverage case. The coverage case has a first sealing part that guides a terminal and a second sealing part that does not guide a terminal. The second sealing part is formed on at least one face (face F) with a maximum area among exterior faces of the power generation element. The assembled battery has a third sealing part being a part of the second sealing part and overlapping the power generation element. In the assembled battery, a heat dissipation plate is placed on the face F where the third sealing part is formed. A projection area of the third sealing part and the heat dissipation plate on the face F occupies 40% or more of the face F.
US11677107B2
A temperature control device for individual battery cells (2) assembled to form a module (1), having a base body (3) which, for the purpose of circumferentially enclosing the battery cells (2), comprises two opposing sealing elements (4, 5) having passage openings (6) located opposite one another in pairs with respect to a respective joining axis, and which base body (3) forms a flow channel extending transversely to the joining axes for a temperature control fluid is described. In order to design a temperature control device of the type described above in such a way that, with less manufacturing effort, an increased tightness of the device is achieved at the same time, even at higher flow rates of the temperature control fluid, it is proposed that the sealing elements (4, 5) are two moulded parts which are identical to one another and which are aligned point-symmetrically with respect to one another and connected to one another and which sealing elements (4, 5) form via a respective bearing surface (7) the base body (3), wherein a receiving groove (9) having a seal compensation region (8) adjoins the bearing surface (7) on the inside of the base body (3).
US11677106B2
A battery pack including a left battery module including a plurality of cells; a left heat transfer frame adjacent to a right side of the left battery module; a cooling member adjacent to the left heat transfer frame; a right heat transfer frame adjacent to a right side of the cooling member; a right battery module including a plurality of cells disposed adjacent to a right side of the right heat transfer frame; a lower plate and an upper cover respective disposed below and above the left battery module, the left heat transfer frame, the cooling member, the right heat transfer frame, and the right battery module; and wherein the upper cover comprises an over-pressing prevention protrusion disposed at a position corresponding to each of the left heat transfer frame, the cooling member, and the right heat transfer frame.
US11677092B2
Provided is an assembly method using an assembly tool used when a component is assembled to each of a plurality of connection ports to provided at an upper surface of a fuel-cell stack and communicating with a plurality of communication holes. The assembly tool includes a base portion positioned on the upper surface of the fuel-cell stack and a plurality of covering portions covering the plurality of connection ports. Each of the plurality of covering portions is, relative to the base portion, provided movably between a covering position for covering a corresponding one of the connection ports and a non-covering position accessible to a corresponding one of the connection ports.
US11677086B2
According to an embodiment, a control system includes a fuel cell configured to generate electric power using an anode and a cathode, a power storage device capable of storing the electric power generated by the fuel cell, auxiliary equipment to which the electric power is able to be supplied, and a controller configured to control operations of the fuel cell and the auxiliary equipment. The controller performs control so that the electric power is consumed by the auxiliary equipment in accordance with a power storage state of the power storage device at the time of power generation of the fuel cell and adjusts one or both of a timing and a degree at which electric power to be consumed by the auxiliary equipment is limited on the basis of temperature information associated with the auxiliary equipment.
US11677082B2
Various embodiments are directed to an electrochemical cell having a non-homogeneous anode. The electrochemical cell includes a container, a cathode forming a hollow cylinder within the container, an anode positioned within the hollow cylinder of the cathode, and a separator between the cathode and the anode. The anode comprises at least two concentric anode portions, defined by different anode characteristics. For example, the two anode portions may contain different surfactant types, which provides the two anode portions with different charge transfer resistance characteristics. By lowering the charge transfer resistance of a portion of an anode located proximate the current collector of the cell (and away from the separator) relative to an anode portion located adjacent the separator, improved cell discharge performance may be obtained.
US11677081B2
A membrane electrode assembly includes a polyelectrolyte membrane having a first surface and a second surface facing away from the first surface; a fuel-electrode-side electrocatalyst layer bonded to the first surface and containing a first catalytic material, a first electrically conductive carrier, and a first polyelectrolyte, the first electrically conductive carrier carrying the first catalytic material; and an oxygen-electrode-side electrocatalyst layer bonded to the second surface and containing a second catalytic material, a second electrically conductive carrier, a second polyelectrolyte, and a fibrous material, the second electrically conductive carrier carrying the second catalytic material. The membrane electrode assembly contains voids, the voids including pores each having a size in a range of 3 nm or more and 5.5 μm or less.
US11677079B2
An electrode for a lithium secondary battery, which may be applied to the lithium secondary battery to increase cycling performance and efficiency of the battery, and a manufacturing method thereof. When the electrode for the lithium secondary battery of the present invention is applied to the lithium secondary battery, uniform deposition and stripping of lithium metals occur throughout the surface of the electrode when charging/discharging the battery, thereby inhibiting uneven growth of lithium dendrites and improving cycle and efficiency characteristics of the battery. Further, the electrode for the lithium secondary battery of the present invention exhibits remarkably high flexibility, as compared with existing electrodes including a metal current collector and an active material layer, thereby improving processability during manufacture of the electrode and assembling the battery.
US11677075B2
Provided is a cathode active material for a lithium ion secondary battery in which the secondary particles constituting the powder have a high breaking strength and a good coatability, and a method for manufacturing same. The cathode active material for a lithium ion secondary battery includes a primary particle of a lithium composite compound; and secondary particles formed by an aggregation of primary particles, wherein a ratio between an average particle size of the primary particles and an average particle size of the secondary particles is 0.006 or more and 0.25 or less, an amount of lithium carbonate is 0.4% by mass or less, and a breaking strength of the secondary particles is 30 MPa or more.
US11677066B2
To provide an anode material configured to increase the reversible capacity of lithium ion secondary batteries, and a method for producing the anode material. The anode material is an anode material for lithium ion secondary batteries, comprising a P element and a C element and being in an amorphous state.
US11677059B2
A light-emitting device package includes a lead frame, a light-emitting device chip, a molding structure, and a plurality of slots. The lead frame includes a first lead and a second lead including metal and spaced apart from each other. The light-emitting device chip is mounted on a first area of the lead frame, which includes a part of the first lead and a part of the second lead. The molding structure includes an outer barrier surrounding an outside of the lead frame and an inner barrier. The plurality of slots are formed in each of the first lead and the second lead. The inner barrier divides the lead from into the first area and a second area. The inner barrier fills between the first lead in the second lead. The second area is located outside of the first area. The plurality of slots are filled by the molding structure.
US11677056B2
A display apparatus including a panel substrate, a TFT panel part including a plurality of connection electrodes disposed on an upper surface of the panel substrate, and a light emitting diode part disposed on the TFT panel part and including a plurality of light emitting modules adjacent to each other, in which each of the light emitting modules includes a plurality of pixels, each of the pixels includes three sub-pixels, and the three sub-pixels include blue light emitting diodes, green light emitting diodes, and red light emitting diodes.
US11677055B2
A light emitting device includes at least one light emitting and connecting unit that includes an epitaxial layer structure and a metallic connecting layer structure, and an insulating substrate that has a main substrate body and first and second contact members. The connecting layer structure interconnects the epitaxial layer structure and the main substrate body, and is completely plane at least right under the epitaxial layer structure. The contact members extend from a first surface to a second surface on the main substrate body, and are disposed outside an imaginary projection of the epitaxial layer structure on the main substrate body. The first contact member is electrically connected with the connecting layer structure. Alight emitting apparatus including the device is also disclosed.
US11677049B2
An optoelectronic device, including: light-emitting sources, each light-emitting source being capable of emitting a first radiation at a first wavelength; photoluminescent blocks distributed into first photo-luminescent blocks capable of converting by optical pumping the first radiation into a second radiation at a second wavelength and second photoluminescent blocks capable of converting by optical pumping the first radiation into a third radiation at a third wavelength; and for each photoluminescent block, an optical coupler including a first photonic crystal at least partially surrounding the photoluminescent block and covering, with the photo-luminescent block, one of the light-emitting sources next to the photoluminescent block, the optical coupler being capable of modifying the propagation direction of rays of the first radiation emitted by the light-emitting source to redirect the rays towards the photoluminescent block.
US11677030B2
A thin-film transistor substrate includes: an active layer on a substrate, the active layer including: a first semiconductor material layer; a conductor layer on the first semiconductor material layer, and including a metal element; and a second semiconductor material layer on the conductor layer; a gate insulating layer on the active layer; and a gate electrode on the gate insulating layer, and at least partially overlapping with the active layer.
US11677024B2
A method for manufacturing first and second transistors on a semiconductor substrate includes: depositing an interface layer on the semiconductor substrate; depositing a gate insulator layer on the interface layer; depositing a first ferroelectric layer on the gate insulator layer over a first region for the first transistor; depositing a metal gate layer on the gate insulator layer over a second region for the second transistor and on the first ferroelectric layer over the first region for the first transistor; and patterning the metal gate layer, first ferroelectric layer, gate insulator layer and interface layer to form a first gate stack for the first transistor which includes the metal gate layer, first ferroelectric layer, gate insulator layer and interface layer and a second gate stack for the second transistor which includes the metal gate layer, gate insulator layer and interface layer.
US11677021B2
A semiconductor device, the device comprising: a first silicon layer comprising first single crystal silicon; an isolation layer disposed over said first silicon layer; a first metal layer disposed over said isolation layer; a second metal layer disposed over said first metal layer; a first level comprising a plurality of transistors, said first level disposed over said second metal layer, wherein said isolation layer comprises an oxide to oxide bond surface, wherein said plurality of transistors comprise a second single crystal silicon region; and a plurality of capacitors, wherein said plurality of capacitors comprise functioning as a decoupling capacitor to mitigate power supply noise.
US11677017B2
Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a (111) silicon substrate, a (111) germanium quantum well layer above the substrate, and a plurality of gates above the quantum well layer. In some embodiments, a quantum dot device may include a silicon substrate, an insulating material above the silicon substrate, a quantum well layer above the insulating material, and a plurality of gates above the quantum well layer.
US11677015B2
In a method of manufacturing a semiconductor device, a fin structure having a channel region protruding from an isolation insulating layer disposed over a semiconductor substrate is formed, a cleaning operation is performed, and an epitaxial semiconductor layer is formed over the channel region. The cleaning operation and the forming the epitaxial semiconductor layer are performed in a same chamber without breaking vacuum.
US11677010B2
In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is etched, thereby forming a source/drain space. The first semiconductor layers are laterally etched through the source/drain space. An inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers. A source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. A lateral end of each of the first semiconductor layers has a V-shape cross section after the first semiconductor layers are laterally etched.
US11677006B2
According to one embodiment, a nitride crystal includes first, second, and third nitride crystal regions. The third nitride crystal region includes Al, and is provided between the first and second nitride crystal regions. A third oxygen concentration in the third nitride crystal region is greater than a first oxygen concentration in the first nitride crystal region and greater than a second oxygen concentration in the second nitride crystal region. A third carbon concentration in the third nitride crystal region is greater than a first carbon concentration in the first nitride crystal region and greater than a second carbon concentration in the second nitride crystal region. A <0001> direction of the first nitride crystal region is one of a first orientation from the second nitride crystal region toward the first nitride crystal region or a second orientation from the first nitride crystal region toward the second nitride crystal region.
US11677004B2
Various strained channel transistors are disclosed herein. An exemplary semiconductor device includes a substrate and a fin structure disposed over the substrate. The fin structure includes a first epitaxial layer disposed on the substrate, a second epitaxial layer disposed on the first epitaxial layer, and a third epitaxial layer disposed on the second epitaxial layer. The second epitaxial layer includes a relaxed transversal stress component and a longitudinal compressive stress component, and the third epitaxial layer has uni-axial strain. A gate structure is disposed on a channel region of the fin structure, such that the gate structure interposes a source region and a drain region of the fin structure.
US11677003B2
A nanowire device of the present description may be produced with the incorporation of at least one hardmask during the fabrication of at least one nanowire transistor in order to assist in protecting an uppermost channel nanowire from damage that may result from fabrication processes, such as those used in a replacement metal gate process and/or the nanowire release process. The use of at least one hardmask may result in a substantially damage free uppermost channel nanowire in a multi-stacked nanowire transistor, which may improve the uniformity of the channel nanowires and the reliability of the overall multi-stacked nanowire transistor.
US11676999B2
An electronic device includes a dielectric layer including crystal grains having aligned crystal orientations the dielectric layer may be between a substrate and a gate electrode. The dielectric layer may be between isolated first and second electrodes. A method of manufacturing an electronic device may include preparing a substrate having a channel layer, forming the dielectric layer on the channel layer, and forming a gate electrode on the dielectric layer.
US11676990B2
To improve color reproduction areas in a display device having light-emitting elements. A display region has a plurality of picture elements. Each picture element includes: first and second pixels each including a light-emitting element which has a chromaticity whose x-coordinate in a CIE-XY chromaticity diagram is 0.50 or more; third and fourth pixels each including a light-emitting element which has a chromaticity whose y-coordinate in the diagram is 0.55 or more; and fifth and sixth pixels each including a light-emitting element which has a chromaticity whose x-coordinate and y-coordinate in the diagram are 0.20 or less and 0.25 or less, respectively. The light-emitting elements in the first and second pixels have different emission spectrums from each other; the light-emitting elements in the third and fourth pixels have different emission spectrums from each other; and the light-emitting elements in the fifth and sixth pixels have different emission spectrums from each other.
US11676989B2
Provided is a display device including a display layer which includes an active area and a peripheral area adjacent to the active area, a biometric information sensing layer disposed below the display layer and including a sensor, and an optical pattern layer disposed on an optical pattern plane between the biometric information sensing layer and the display layer and including a light blocking part and a transmission part having higher light transmittance than the light blocking part, wherein an upper surface of the light blocking part is concave, and recessed away from the optical pattern plane.
US11676988B2
An image sensor is disclosed. The image sensor includes a first pixel of a first color arranged alternately with a pixel of a second color in a first direction of a pixel array, a second pixel of the first color arranged alternately with a pixel of a third color in the first direction in a row different from that of the first pixel of the first color, an isolation layer formed to surround the first pixel in the pixel array and structured to have a first depth, and an isolation layer formed to surround the second pixel in the pixel array and structured to have a second depth different from the first depth. One of the first and second pixels of the first color, and each of the pixels of the second color and the third color are configured to selectively receive different colors of light, respectively.
US11676985B2
A back side illuminated image sensor includes a pixel formed by three doped photosensitive regions that are superposed vertically in a semiconductor substrate. Each photosensitive region is laterally framed by a respective vertical annular gate. The vertical annular gates are biased by a control circuit during an integration phase so as to generate an electrostatic potential comprising potential wells in the central portion of the volume of each doped photosensitive region and a potential barrier at each interface between two neighboring doped photosensitive regions.
US11676984B2
The present disclosure relates to a solid-state imaging device capable of further decreasing reflectivity, a method of manufacturing the same, and an electronic device. The solid-state imaging device includes a semiconductor substrate on which a photoelectric converting unit is formed for each of a plurality of pixels, and an antireflection structure provided on a light incident surface side from which light is incident on the semiconductor substrate in which a plurality of types of projections of different heights is formed. The antireflection structure is formed by performing processing of digging a light incident surface of the semiconductor substrate in a plurality of stages with different processing conditions. The antireflection structure is the structure in which a second projection lower than a first projection is formed between the first projections of predetermined height. The present technology may be applied to a CMOS image sensor, for example.
US11676976B2
A PIN photodetector includes an n-type semiconductor layer, an n-type semiconductor cap layer, a first plurality of p-type regions located within the n-type semiconductor cap layer and separated from one another by a distance d1, and an absorber layer located between the n-type semiconductor layer and the n-type semiconductor cap layer including the first plurality of p-type regions. The plurality of p-type regions are electrically connected to one another to provide an electrical response to light incident to the PIN photodetector.
US11676972B2
A display device includes a first transistor. The first transistor includes an oxide semiconductor layer, a first gate electrode facing the oxide semiconductor layer and a gate insulating layer between the oxide semiconductor layer and the first gate electrode. The first gate electrode has hydrogen storage properties.
US11676969B2
Various embodiments of the present disclosure are directed towards a semiconductor wafer. The semiconductor wafer comprises a handle wafer. A first oxide layer is disposed over the handle wafer. A device layer is disposed over the first oxide layer. A second oxide layer is disposed between the first oxide layer and the device layer, wherein the first oxide layer has a first etch rate for an etch process and the second oxide layer has a second etch rate for the etch process, and wherein the second etch rate is greater than the first etch rate.
US11676967B2
Disclosed is a semiconductor device comprising a substrate, a plurality of active patterns that protrude from the substrate, a device isolation layer between the active patterns, and a passivation layer that covers a top surface of the device isolation layer and exposes upper portions of the active patterns. The device isolation layer includes a plurality of first isolation parts adjacent to facing sidewalls of the active patterns, and a second isolation part between the first isolation parts. A top surface of the second isolation part is located at a lower level than that of top surfaces of the first isolation parts.
US11676964B2
An integrated circuit (IC) device includes: a fin-type active area protruding from a substrate and extending in a first horizontal direction; a first nanosheet disposed above an upper surface of the fin-type active area with a first separation space therebetween; a second nanosheet disposed above the first nanosheet with a second separation space therebetween; a gate line extending on the substrate in a second horizontal direction intersecting the first horizontal direction, at least a portion of the gate line being disposed in the second separation space; and a bottom insulation structure disposed in the first separation space.
US11676963B2
An integrated circuit device includes a fin-type active region protruding from a substrate and extending in a first direction, a plurality of semiconductor patterns disposed apart from an upper surface of the fin-type active region, the plurality of semiconductor patterns each including a channel region; a gate electrode surrounding the plurality of semiconductor patterns, extending in a second direction perpendicular to the first direction, and including a main gate electrode, which is disposed on an uppermost semiconductor pattern of the plurality of semiconductor patterns and extends in the second direction, and a sub-gate electrode disposed between the plurality of semiconductor patterns; a spacer structure disposed on both sidewalls of the main gate electrode; and a source/drain region connected to the plurality of semiconductor patterns, disposed at both sides of the gate electrode, and contacting a bottom surface of the spacer structure.
US11676961B2
A semiconductor device includes a resistor having a resistor body including polysilicon, with fluorine in the polysilicon. The resistor body has a laterally alternating distribution of silicon grain sizes. The semiconductor device further includes an MOS transistor having a gate including polysilicon with fluorine. The fluorine in the gate has a higher average concentration than the fluorine in the resistor body. The semiconductor device may be formed by forming a gate/resistor layer including polysilicon. A fluorine implant mask is formed over the gate/resistor layer, exposing the gate/resistor layer in an area for the gate and over implant segments in an area for the resistor body. The implant segments do not cover the entire area for the resistor body. Fluorine is implanted into the gate/resistor layer where exposed by the fluorine implant mask. The gate/resistor layer is patterned to form the gate and the resistor body.
US11676953B2
A display module and system applications including a display module are described. The display module may include a display substrate including a front surface, a back surface, and a display area on the front surface. A plurality of interconnects extend through the display substrate from the front surface to the back surface. An array of light emitting diodes (LEDs) are in the display area and electrically connected with the plurality of interconnects, and one or more driver circuits are on the back surface of the display substrate. Exemplary system applications include wearable, rollable, and foldable displays.
US11676951B2
In a described example, an apparatus includes: a first mold compound partially covering a thermal pad that extends through a pre-molded package substrate formed of a first mold compound, a portion of the thermal pad exposed on a die side surface of the pre-molded package substrate, the pre-molded package substrate having a recess on the die side surface, with an exposed portion of the thermal pad and a portion of the first mold compound in a die mounting area in the recess; a semiconductor die mounted to the thermal pad and another semiconductor die mounted to the mold compound in the die mounting area; wire bonds coupling bond pads on the semiconductor dies to traces on the pre-molded package substrate; and a second mold compound over the die side surface of the pre-molded package substrate and covering the wire bonds, the semiconductor dies, the recess, and a portion of the traces.
US11676950B2
An apparatus is provided which comprises: a plurality of plated through holes; a material with magnetic properties adjacent to the plurality of plated through holes; and one or more conductors orthogonal to a length of the plurality of plated through holes, the one or more conductors to couple one plated through hole of the plurality with another plated through hole of the plurality such that an inductor is formed.
US11676935B2
A bonding method is capable of realizing high bonding strength and connection reliability even at a connection part in a high temperature area by means of simple operation low temperature bonding. The method includes a first step wherein, on at least one of the bonded surfaces of two materials to be bonded having a smooth surface, a thin film of noble metal with a volume diffusion coefficient greater than that of the base metal of the material to be bonded is formed using an atomic layer deposition method at a vacuum of 1.0 Pa or higher, a second step wherein a laminate is formed by overlapping the two materials to be bonded so that the bonded surfaces of the two materials are connected through the thin film, and a third step wherein the two materials to be bonded are bonded by holding the laminate at a predetermined temperature.
US11676933B2
An arrangement for joining two joining members includes a first part having a support surface, a first carrier element configured to carry at least one foil, a transportation unit configured to arrange the first carrier element such that the foil is arranged above the support surface in a vertical direction, and a second part configured to exert pressure to a joining stack, when the joining stack is arranged on the support surface. The joining stack includes a first joining member arranged on the support surface, a second joining member, and an electrically conductive connection layer arranged between the joining members. When pressure is exerted on the joining stack, the foil is arranged between the second part and the joining stack and is pressed onto the joining stack and the joining stack is pressed onto the first part, compressing the connection layer and forming a bond between the joining members.
US11676932B2
Semiconductor devices having interconnect structures with narrowed portions configured to mitigate thermomechanical stresses, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor package includes a semiconductor die and a pillar structure coupled to the semiconductor die. The pillar structure can include an end portion away from the semiconductor die, the end portion having a first cross-sectional area. The pillar structure can further include a narrowed portion between the end portion and the semiconductor die, the narrowed portion having a second cross-sectional area less than the first-cross-sectional area of the end portion. A bond material can be coupled to the end portion of the pillar structure.
US11676927B2
Provided is a semiconductor package device including a lower redistribution substrate including a first redistribution pattern, the first redistribution pattern including a first interconnection portion and a first via portion provided on the first interconnection portion, a semiconductor chip disposed on the lower redistribution substrate, the semiconductor chip including a chip pad facing the lower redistribution substrate, an upper redistribution substrate vertically spaced apart from the lower redistribution substrate, the upper redistribution substrate including a second redistribution pattern, a vertical conductive structure disposed between the lower redistribution substrate and the upper redistribution substrate and disposed at a side of the semiconductor chip, a third redistribution pattern disposed between the lower redistribution substrate and the vertical conductive structure, and an encapsulant disposed on the semiconductor chip, the vertical conductive structure, and the third redistribution pattern, wherein the first via portion is in contact with the third redistribution pattern, and wherein a level of a bottom surface of the vertical conductive structure is higher than a level of a bottom surface of the chip pad.
US11676923B2
Semiconductor packages may include a first semiconductor chip including a first through-electrode and a first upper connection pad and on an upper surface of the first semiconductor chip, a second semiconductor chip on the first semiconductor chip and including a second lower connection pad on a lower surface of the second semiconductor chip, a connection bump between the first and second semiconductor chips and connected to the first upper connection pad and the second lower connection pad, a first insulating layer between the first and second semiconductor chips and surrounding the first upper connection pad, the connection bump, and the second lower connection pad, and a second insulating layer between the first semiconductor chip and the first insulating layer and extending on the upper surface of the first semiconductor chip, a side surface of the first upper connection pad, and a portion of a side surface of the connection bump.
US11676916B2
A package structure and a formation method of a package structure are provided. The package structure includes a circuit substrate and a die package bonded to the circuit substrate through bonding structures. The package structure also includes a warpage-control element attached to the circuit substrate. The warpage-control element has a protruding portion extending into the circuit substrate. The warpage-control element has height larger than that of the die package.
US11676914B2
A semiconductor substrate may include a plurality of semiconductor chips and a protection pattern. The semiconductor chips may be divided by two scribe lanes intersecting each other. Corners of the semiconductor chips may be disposed at the intersection of the two scribe lanes. The protection pattern may be arranged at the intersection of the scribe lanes to surround the corners of the semiconductor chips. Thus, the corners of the semiconductor chips may be protected by the protection pattern form colliding with each other in a following grinding process.
US11676913B2
A semiconductor package includes a substrate. A first semiconductor chip is disposed on the substrate and is electrically connected to the substrate. The first semiconductor chip comprises a first sidewall extending in a first direction, a second sidewall extending in a second direction that crosses the first direction, and a third sidewall disposed between the first sidewall and the second sidewall and configured to connect the first sidewall and the second sidewall. The third sidewall has a curved surface shape. A second semiconductor chip is disposed on the first semiconductor chip and is electrically connected to the first semiconductor chip.
US11676910B2
Two conductive reference layers are embedded in a semiconductor package substrate. The embedded reference layers facilitate low electromagnetic noise coupling between adjacent signals for semiconductor device package.
US11676906B2
A chip package includes a redistribution layer, at least one first semiconductor chip, an integrated fan-out package, and an insulating encapsulation. The at least one first semiconductor chip and the integrated fan-out package are electrically connected to the redistribution layer, wherein the at least one first semiconductor chip and the integrated fan-out package are located on a surface of the redistribution layer and electrically communicated to each other through the redistribution layer, and wherein the integrated fan-out package includes at least one second semiconductor chip. The insulating encapsulation encapsulates the at least one first semiconductor chip and the integrated fan-out package.
US11676901B2
A semiconductor device includes a lower wafer including a first substrate, a first dielectric layer that is defined on the first substrate, and a first wiring line that is defined in the first dielectric layer; an upper wafer including a second substrate, an isolation layer that is defined in an upper surface of the second substrate, a second dielectric layer, bonded to an upper surface of the first dielectric layer, that covers a lower surface of the second substrate and that includes at least one portion defined in the lower surface of the second substrate below and in contact with the isolation layer, and a third dielectric layer that is defined on the upper surface of the second substrate, and a second wiring line that is defined on the third dielectric layer; and a through via passing through, under the second wiring line, the third dielectric layer, the isolation layer, the second dielectric layer under the isolation layer and the first dielectric layer, and coupling the second wiring line and the first wiring line.
US11676899B2
Embedded packaging for high voltage, high temperature operation of power semiconductor devices is disclosed, wherein a semiconductor die is embedded in a dielectric body comprising a dielectric polymer composition characterized by a conductivity transition temperature Tc, a first activation energy EaLow for conduction in a temperature range below Tc, and a second activation energy EaHigh for conduction in a temperature range above Tc. A test methodology is disclosed for selecting a dielectric epoxy composition having values of Tc, EaLow, and EaHigh that provide a conduction value below a required reliability threshold, e.g. ≤5×10−13 S/cm, for a specified operating voltage and temperature. For example, the power semiconductor device comprises a GaN HEMT rated for operation at ≥100V wherein the package body is formed from a laminated dielectric epoxy composition for operation at >150 C, wherein Tc is ≥75 C, EaLow is ≤0.2 eV and EaHigh is ≤1 eV, for improved reliability for high voltage, high temperature operation.
US11676887B2
A semiconductor package may include a redistribution substrate having a first surface and a second surface, opposite to each other, a semiconductor chip on the first surface of the redistribution substrate, and a solder pattern on the second surface of the redistribution substrate. The redistribution substrate may include an under-bump pattern coupled to the solder pattern, a first redistribution pattern on the under-bump pattern, the first redistribution pattern including a first via portion and a first wire portion, and a first seed pattern between the under-bump pattern and the first redistribution pattern and on a side surface of the first via portion and a bottom surface of the first wire portion. A bottom surface of the first seed pattern may be at a level lower than a top surface of the under-bump pattern.
US11676884B2
A coupling device provides galvanic isolation using a leadframe that is configured to support two integrated circuit chips in a coplanar manner. Each chip contains an inductive coupling coil. The lead frame includes a set of bond pads for attaching bond wires to couple to the two integrated circuit chips. Two separated die attach pads support the two chips. Each die attach pad is configured to support one of the two integrated circuit chips with a plurality of cantilevered fingers.
US11676883B2
An Integrated Circuit (IC) assembly, comprising an IC package coupled to a substrate, and a subassembly comprising a thermal interface layer. The thermal interface layer comprises a phase change material (PCM) over the IC package. At least one thermoelectric cooling (TEC) apparatus is thermally coupled to the thermal interface layer.
US11676880B2
An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region includes a plurality of interconnect levels. Each interconnect level includes interconnects in dielectric material. The integrated circuit includes a thermal via in the interconnect region. The thermal via extends vertically in at least one of the interconnect levels in the interconnect region. The thermal via includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal via has a thermal conductivity higher than dielectric material touching the thermal via. The cohered nanoparticle film is formed by a method which includes an additive process.
US11676873B2
Semiconductor packages having a sealant bridge between an integrated heat spreader and a package substrate are described. In an embodiment, a semiconductor package includes a sealant bridge anchoring the integrated heat spreader to the package substrate at locations within an overhang gap laterally between a semiconductor die and a sidewall of the integrated heat spreader. The sealant bridge extends between a top wall of the integrated heat spreader and a die side component, such as a functional electronic component or a non-functional component, or a satellite chip on the package substrate. The sealant bridge modulates warpage or stress in thermal interface material joints to reduce thermal degradation of the semiconductor package.
US11676868B2
Techniques described herein enable respective (different) types of metal silicide layers to be formed for p-type source/drain regions and n-type source/drain regions in a selective manner. For example, a p-type metal silicide layer may be selectively formed over a p-type source/drain region (e.g., such that the p-type metal silicide layer is not formed over the n-type source/drain region) and an n-type metal silicide layer may be formed over the n-type source/drain region (which may be selective or non-selective). This provides a low Schottky barrier height between the p-type metal silicide layer and the p-type source/drain region, as well as a low Schottky barrier height between the n-type metal silicide layer and the n-type source/drain region. This reduces the contact resistance for both p-type source/drain regions and n-type source/drain regions.
US11676866B2
A method for forming a semiconductor arrangement comprises forming a first fin in a semiconductor layer. A first gate dielectric layer includes a first high-k material is formed over the first fin. A first sacrificial gate electrode is formed over the first fin. A dielectric layer is formed adjacent the first sacrificial gate electrode and over the first fin. The first sacrificial gate electrode is removed to define a first gate cavity in the dielectric layer. A second gate dielectric layer including a second dielectric material different than the first high-k material is formed over the first gate dielectric layer in the first gate cavity. A first gate electrode is formed in the first gate cavity over the second gate dielectric layer.
US11676863B2
Implementations of a method for aligning a semiconductor wafer for singulation may include: providing a semiconductor wafer having a first side and a second side. The first side of the wafer may include a plurality of die and the plurality of die may be separated by streets. The semiconductor wafer may include an edge ring around a perimeter of the wafer on the second side of the wafer. The wafer may also include a metal layer on the second side of the wafer. The metal layer may substantially cover the edge ring. The method may include grinding the edge ring to create an edge exclusion area and aligning the semiconductor wafer with a saw using a camera positioned in the edge exclusion area on the second side of the wafer. Aligning the wafer may include using three or more alignment features included in the edge exclusion area.
US11676848B2
A method of aligning micro light emitting elements includes supplying the plurality of micro light emitting elements on a substrate including a plurality of grooves having different shapes, the plurality of micro light emitting elements being configured to be inserted exclusively and respectively into the plurality of grooves; respectively inserting the plurality of micro light emitting elements into the plurality of grooves; and aligning the plurality of micro light emitting elements, wherein at least one groove of the plurality of grooves has a shape that is different from a shape of a respective micro light emitting element inserted into the at least one groove.
US11676836B2
A semiconductor device includes a first semiconductor chip including bitlines, wordlines, common source line, first bonding pads, second bonding pads, third bonding pads and memory cells, the memory cells being electrically connected to the bitlines, the wordlines, and the common source line, the first bonding pads being electrically connected to the bitlines, the second bonding pads being electrically connected to the wordlines, and the third bonding pads being electrically connected to the common source line; a second semiconductor chip including fourth bonding pads, fifth bonding pads, sixth bonding pads and an input/output circuit, the fourth bonding pads being electrically connected to the first bonding pads, the fifth bonding pads being electrically connected to the second bonding pads, the sixth bonding pads being electrically connected to the third bonding pads and the input/output circuit being configured to write data to the memory cells via the fourth bonding pads and the fifth bonding pads; a sensing line extending along an edge portion of the first semiconductor chip, an edge portion of the second semiconductor chip, or the edge portion of the first semiconductor chip and the edge portion of the second semiconductor chip; and a detecting circuit in the second semiconductor chip, the detecting circuit being configured to detect defects from the first semiconductor chip, the second semiconductor chip, or both the first semiconductor chip and the second semiconductor chip using the sensing line.
US11676835B2
A method includes: supplying a processing liquid to a center position of a substrate surface; shifting a supply position of the processing liquid from the center position to a first eccentric position; holding the supply position of the processing liquid at the first eccentric position and supplying a substitute liquid to a second eccentric position; shifting the supply position of the processing liquid in a direction away from the center position, and shifting a supply position of the substitute liquid to the center position; and supplying the processing liquid to the first eccentric position at a first flow rate, and reducing the flow rate of the processing liquid to a second flow rate after the supply position of the processing liquid starts to be shifted from the first eccentric position in the direction and until the supply position of the substitute liquid reaches the center position.
US11676834B2
In substrate processing, by supplying a first processing liquid onto an upper surface 91 of a substrate 9 held in a horizontal state, a liquid film 81 of the first processing liquid which entirely covers the upper surface 91 is formed. Further, by heating the substrate 9, a vapor layer 82 of the first processing liquid is formed between the upper surface 91 and the liquid film 81 of the first processing liquid on the upper surface 91. Then, by supplying a second processing liquid onto the upper surface 91 of the substrate 9, the liquid film 81 of the first processing liquid is removed from the upper surface 91. It is thereby possible to appropriately remove extraneous matters 89 from the upper surface 91 of the substrate 9, which are taken in the liquid film 81 of the first processing liquid as the vapor layer 82 is formed.
US11676832B2
The present disclosure relates to systems and methods for fabricating semiconductor packages, and more particularly, for forming features in semiconductor packages by laser ablation. In one embodiment, the laser systems and methods described herein can be utilized to pattern a substrate to be utilized as a package frame for a semiconductor package having one or more interconnections formed therethrough and/or one or more semiconductor dies disposed therein. The laser systems described herein can produce tunable laser beams for forming features in a substrate or other package structure. Specifically, frequency, pulse width, pulse shape, and pulse energy of laser beams are tunable based on desired sizes of patterned features and on the material in which the patterned features are formed. The adjustability of the laser beams enables rapid and accurate formation of features in semiconductor substrates and packages with controlled depth and topography.
US11676817B2
A method of forming a device includes forming a hard mask layer over an underlying layer of a substrate, forming an anti-reflective coating layer over the hard mask layer, forming a patterned resist layer over the anti-reflective coating layer, and forming a mandrel including the anti-reflective coating layer by patterning the anti-reflective coating layer using the patterned resist layer as an etch mask. The method includes forming a sidewall spacer on the mandrel including the anti-reflective coating layer, forming a freestanding spacer on the hard mask layer by removing the mandrel from the anti-reflective coating layer, and using the freestanding spacer as an etch mask, patterning the underlying layer of the substrate.
US11676816B2
A method of forming a semiconductor device includes forming first sacrificial patterns on a lower structure, forming first remaining mask layers having a “U” shape between the first sacrificial patterns to be in contact with the first sacrificial patterns, forming first remaining mask patterns by pattering the first remaining mask layers, each of the first remaining mask patterns including a horizontal portion, parallel to an upper surface of the lower structure, and a vertical portion, perpendicular to the upper surface of the lower structure, forming second mask patterns spaced apart from the vertical portions of the first remaining mask patterns, removing the first sacrificial patterns remaining after forming the second mask patterns, and forming first mask patterns by etching the horizontal portions of the first remaining mask patterns.
US11676815B2
A patterning method includes the following steps. A mask layer is formed on a material layer. A first hole is formed in the mask layer by a first photolithography process. A first mask pattern is formed in the first hole. A second hole is formed in the mask layer by a second photolithography process. A first spacer is formed on an inner wall of the second hole. A second mask pattern is formed in the second hole after the step of forming the first spacer. The first spacer surrounds the second mask pattern in the second hole. The mask layer and the first spacer are removed. The pattern of the first mask pattern and the second mask pattern are transferred to the material layer by an etching process.
US11676805B2
The invention generally relates to systems and methods for performing multiple precursor, neutral loss and product ion scans in a single ion trap. In certain aspects, the invention provides systems including a mass spectrometer having a single ion trap, and a central processing unit (CPU), and storage coupled to the CPU for storing instructions that when executed by the CPU cause the system to apply at least one of the following ion scans to a single ion population in the single ion trap: multiple precursor ion scans, a plurality of segmented neutral loss scans, or multiple simultaneous neutral loss scans.
US11676800B2
A substrate processing apparatus includes a substrate stage on which a substrate is disposed, a first radio-frequency power supply configured to supply first radio-frequency power having a first frequency to the substrate stage, an impedance converter configured to convert an impedance on a load side seen from the first radio-frequency power supply into a set impedance, a second radio-frequency power supply configured to supply second radio-frequency power having a second frequency lower than the first frequency to the substrate stage, and a controller configured to control the set impedance of the impedance converter, and the controller sets the set impedance according to a substrate processing.
US11676796B2
A charged particle beam device including: a charged particle beam source which emits a charged particle beam; a blanking device which has an electrostatic deflector that deflects and blocks the charged particle beam; an irradiation optical system which irradiates a specimen with the charged particle beam; and a control unit which controls the electrostatic deflector, the control unit performing processing of: acquiring a target value of a dose of the charged particle beam for the specimen; setting a ratio A/B of a time A during which the charged particle beam is not blocked to a unit time B (where A≠B, A≠0), based on the target value; and operating the electrostatic deflector based on the ratio.
US11676794B2
We describe a super-resolution optical microscopy technique in which a sample is located on or adjacent to the planar surface of an aplanatic solid immersion lens and placed in a cryogenic environment.
US11676784B2
A vacuum interrupter includes at least one insulating body, a fixed contact, a fixed contact flange, a moving contact having a longitudinal axis of the moving contact, a moving contact flange, a moving contact bearing, and a bellows. The fixed contact is stationarily disposed in the fixed contact flange, the moving contact is moveably guided in the moving contact bearing and the moving contact is moveably secured to the moving contact flange by the bellows. The bellows is secured to the moving contact flange by a first bellows end and the bellows is secured to the moving contact by a second bellows end. An increased pressure resistance of the vacuum interrupter against ambient pressures over 1 bar is achieved by a sleeve which is secured to the moving contact against movements along the longitudinal axis of the moving contact, and which is guided through the moving contact bearing.
US11676783B2
A press-type input device includes a first pressing member, a second pressing member, a base, and a holding member. The first pressing member has a pressure receiving surface and a first axis and is tiltable around the first axis. The second pressing member has a second axis and is tiltable around the second axis. The base includes a detection unit configured to detect a tilt of the second pressing member. The holding member is configured to hold, together with the base, the first pressing member and the second pressing member. A location of at least one of the first axis or the second axis is variable in accordance with a pushed location on the pressure receiving surface. When viewed in a direction vertical to the pressure receiving surface, the second axis and the detection unit do not overlap each other.
US11676769B2
Provided herein is a capacitor and method of forming a capacitor. The capacitor comprises an anode with an anode wire extending from the anode. A dielectric is on the anode and a conductive polymer is on the dielectric. The anode comprises at least one face comprising a surface area wherein at least 60% of the surface area is a land and no more than 40% of the surface area comprises perturbations.
US11676765B2
A ceramic electronic device includes a multilayer structure having a parallelepiped shape in which a first dielectric layer of which a main component is ceramic, a first internal electrode layer, a second dielectric layer of which a main component is ceramic, and a second internal electrode layer are stacked in this order, the first internal electrode layer being exposed to a first end face of the parallelepiped shape, the second internal electrode layer being exposed to a second end face of the parallelepiped shape, wherein in the multilayer structure, a conductive layer is provided on a side of the first end face, at a same level in a stacking direction as the second internal electrode, the conductive layer being spaced from the second internal electrode layer. A length of a gap between the second internal electrode layer and the conductive layer is 30 μm or less.
US11676758B2
A magnetic device comprising a magnetic body, a coil disposed in the magnetic body and at least one thermal conductive layer, wherein a first portion of the at least one thermal conductive layer encapsulates at least one portion of the coil and a second portion of the at least one thermal conductive layer is exposed from the magnetic body, wherein the at least one thermal conductive layer forms a continuous thermal conductive path from the coil to the outside of the magnetic body for dissipating heat generated from the coil.
US11676746B2
A method of making a heater includes an aluminum nitride base having equal to or less than 1% impurities, particularly one embodiment having none of polybrominated biphenyl, polybrominated diphenyl ether, hexabromocyclododecane, polyvinyl chloride, chlorinated paraffin, phthalate, cadmium, hexavalent chromium, lead, and mercury. The base is fired in a heating unit before any layering. Thereafter, on a topside and backside of the base a conductor layer is layered and allowed to settle and dry before firing. Next, a resistive layer is layered on the base from a resistor paste such that the resistive layer connects to the conductor layer on the topside. The resistor paste is allowed to settle and dry and then the base with the conductor and resistor layers is fired. At least four layers of glass are layered next over the resistive layer, each instance thereof including layering a glass, drying the glass and firing.
US11676742B2
A chip resistor with a reduced thickness is provided. The chip resistor includes an insulating substrate, a resistor embedded in the substrate, a first electrode electrically connected to the resistor, and a second electrode electrically connected to the resistor. The first electrode and the second electrode are spaced apart from each other in a lateral direction that is perpendicular to the thickness direction of the substrate.
US11676740B2
Aggregated, submarine cable system information is securely stored, accessed and managed. Security is assured through the use of multi-factor authentication that is compliant with National Institutes of Standards And Technology and US. Government Defense Federal Acquisition Regulation requirements. Further, real-time audit logs are generated as end-users access controlled unclassified information.
US11676730B2
A risk-based patient monitoring system for critical care patients combines data from multiple sources to assess the current and the future risks to the patient, thereby enabling providers to review a current patient risk profile and to continuously track a clinical trajectory. A physiology observer module in the system utilizes multiple measurements to estimate Probability Density Functions (PDF) of a number of Internal State Variables (ISVs) that describe components of the physiology relevant to the patient treatment and condition. A clinical trajectory interpreter module in the system utilizes the estimated PDFs of ISVs to identify under which probable patient states the patient can be currently categorized and assign a probability value that the patient will be in each of the identified states. The combination of patient states and their probabilities is defined as the clinical risk to the patient.
US11676721B2
A system for viewing at a client device a series of three-dimensional virtual views over the Internet of a volume visualization dataset contained on centralized databases employs a transmitter for securely sending volume visualization dataset from a remote location to the centralized database, more than one central data storage medium containing the volume visualization dataset, and a plurality of servers in communication with the centralized databases to create virtual views based on client requests. A resource manager load balances the servers, a security device controls communications between the client device and server and the resource manager and central storage medium. Physically secured sites house the components. A web application accepts at the remote location user requests for a virtual view of the volume visualization dataset, transmits the request to the servers, receives the resulting virtual view from the servers, and displays the resulting virtual view to the remote user.
US11676719B2
An example method includes identifying training data indicating features of a sample population and clinical outcomes of the sample population. The clinical outcomes are associated with a heterogeneous condition. The method further includes generating decision trees in a Random Forest (RF) based on the training data, each one of the decision trees being configured to divide the sample population into multiple categories based on the features of the sample population. In response to generating the decision trees, a proximity matrix comprising multiple entries is generated using the RF. One of the entries indicates a proportion of the decision trees that categorize a first individual among the sample population and a second individual among the sample population into the same categories among the multiple categories. The method further includes identifying subgroups of the heterogeneous condition by detecting communities of the proximity matrix.
US11676707B2
A method at a computing device for classifying elements within an input, the method including breaking the input into a plurality of patches; for each patch: creating a vector output; applying a characterization map to select a classification bin from a plurality of classification bins; and utilizing the selected classification bin to classify the vector output to create a classified output; and compiling the classified output from each patch.
US11676706B2
The present invention relates to a medical image processing apparatus and a medical image processing method for a medical navigation device, and more particularly, to an apparatus and method for processing an image provided when using the medical navigation device. To this end, the present invention provides a medical image processing apparatus for a medical navigation device, including: a position tracking unit configured to obtain position information of the medical navigation device within an object; a memory configured to store medical image data generated based on a medical image of the object; and a processor configured to set a region of interest (ROI) based on position information of the medical navigation device in reference to the medical image data, and generate partial medical image data corresponding to the ROI, and a medical image processing method using the same.
US11676704B2
Systems and methods are disclosed for determining at least one geographic region of a plurality of geographic regions, at least one data variable, and/or at least one health variable, estimating a current prevalence of a data variable in a geographic region of the plurality of geographic regions, determining a trend in a relationship between the data variable and the geographic region at a current time, determining a second trend in the relationship between the data variable and the geographic region at at least one prior point in time, determining if the trend in the relationship is irregular within a predetermined threshold with respect to the second trend from the at least one prior point in time, and, upon determining that the trend in the relationship is irregular within a predetermined threshold, generating an alert.
US11676693B2
A device includes a reservoir for holding an article that has thereon and a dispenser for dispensing the articles from the reservoir. A deactivation mechanism may deactivate medicament held within the reservoir.
US11676687B2
Systems and methods are provided for tracking the provenance of genetic material using blockchain-based technologies. Immutable records of transactions associated with the genetic material are generated. These records can be utilized to create an audit trail for the genetic material.
US11676686B2
Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
US11676683B2
Techniques for securely encoding, communicating, and comparing genomic information using probabilistic data structures are provided. In some embodiments, genomic information in a secure computing environment may be encoded and/or anonymized by building a probabilistic data structure that represents sub-strings of the genomic information as members of a set; the probabilistic data structure may then be securely transmitted outside the secure computing environment. In some embodiments, a probabilistic data structure representing sub-strings of sensitive genomic information as members of a set may be received in an unsecure computing environment and may be queried to generate output data indicating whether reference sub-strings are probable members of the set. In some embodiments, querying the probabilistic data structure, and other techniques of analyzing the probabilistic data structure, may be used to determine whether the sensitive genomic information corresponds to an organism associated with the reference genomic information.
US11676673B2
According to one embodiment, a semiconductor memory device includes: first and second select transistors; first and second select gate lines; first and second interconnects; first and second memory cell transistors; and first and second word lines. In a write operation, after execution of a verify operation, in a period in which the second select transistor is ON, a voltage of the first word line changes from a first voltage to a second voltage and a voltage of the second word line changes from a third voltage applied in the verify operation to a fourth voltage, and after the voltage of the first word line changes to the second voltage and the voltage of the second word line changes to the fourth voltage, a voltage of the second select gate line changes from a fifth voltage to a sixth voltage.
US11676668B2
Memories having a first pool of memory cells having a first storage density and a second pool of memory cells having a second storage density greater than the first storage density, and a controller configured to cause the memory to determine whether a value of an indication of available power of a power supply for the memory is less than a threshold, and in response to determining that the value of the indication of available power is less than the threshold, increase a size of the first pool of memory cells, limit programming of data received by the memory to the first pool of memory cells, and cease movement of data from the first pool of memory cells to the second pool of memory cells, as well as apparatus including similar memories.
US11676656B2
Various implementations described herein are related to a device having memory circuitry with bitlines coupled to an array of bitcells. Also, the device may have first precharge circuitry that precharges the bitlines before a write cycle. Also, the device may have second precharge circuitry that precharges the bitlines after the write cycle.
US11676655B2
To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption.
A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
US11676647B2
Systems, apparatuses, and methods related to image based media type selection are described. Memory systems can include multiple types of memory media. Data can be written in a type of memory media based on one or more settings applied to the data. A setting can be determined based on input received by a logic within the memory system. In an example, a method can include receiving, at logic within a memory system that comprising a plurality of memory media types, data from an image sensor coupled to the logic of the memory system, receiving input from a host, identifying one or more attributes of the data, analyzing the received input to determine an setting, generating the setting based on the analyzed input, and writing the data to a first memory media type of the plurality of memory media types based on the generated setting.
US11676646B2
A memory device includes bit lines, and a cell array including strings, each of which includes memory cells, a select cell coupled to a respective one of the bit lines, and a dummy cell between the select cell and the memory cells. The memory device also includes a select line coupled to the select cells, a dummy word line coupled to the dummy cells, word lines each coupled to a respective row of the memory cells, and a controller coupled to the cell array. The controller is configured to drive a voltage on the dummy word line from a first level to a second level lower than the first level. The controller is also configured to drive a voltage on the select line from the first level to the second level, such that the voltage on the select line reaches the second level after the voltage on the dummy word line reaches the second level. The controller is further configured to, after the voltage on the select line reaches the second level, drive a voltage on a selected word line of the word lines from the second level to a third level higher than the first level to program the memory cells coupled to the selected word line.
US11676634B2
An optical disk (100) of the present invention includes (i) a medium information region (101) (a) in which type identification information is recorded by recesses and/or protrusions which are formed by a given modulation method and whose lengths are longer than a length of an optical system resolution limit of a playback device and (b) in which first address information is recorded in a first address data format and (ii) a data region (102) (a) in which content data is recorded by recesses and/or protrusions which are formed by the given modulation method and which include a recess and/or a protrusion whose length is shorter than the length of the optical system resolution limit and (b) in which second address information is recorded in a second address data format.
US11676627B2
Aspects of the present disclosure generally relate to a magnetic recording head that includes a main pole, a leading shield, a first side shield disposed on a first side of the main pole, a second side shield disposed on a second side of the main pole, and a trailing shield. The trailing shield is disposed on a trailing side of the main pole. One or more approaches are disclosed to control return-fluxes. In some embodiments, at least one of the upper return pole, the leading shield, the trailing shield, the first side shield, and the second side shield includes a laminate structure having at least a pair of ferromagnetic layers, and a non-magnetic spacer layer disposed between adjacent ferromagnetic layers. In some embodiments, one or more shunts are positioned, such as connecting the leading shield to the upper return pole in order to create circuits to control magnetic flux.
US11676622B2
An audio processing system (100) accepts an audio bitstream having one of a plurality of predefined audio frame rates. The system comprises a front-end component (110), which receives a variable number of quantized spectral components, corresponding to one audio frame in any of the predefined audio frame rates, and performs an inverse quantization according to predetermined, frequency-dependent quantization levels. The front-end component may be agnostic of the audio frame rate. The audio processing system further comprises a frequency-domain processing stage (120) and a sample rate converter (130), which provide a reconstructed audio signal sampled at a target sampling frequency independent of the audio frame rate. By its frame-rate adaptability, the system can be configured to operate frame-synchronously in parallel with a video processing system that accepts plural video frame rates.
US11676618B1
An example method of operation may include designating sub-regions which collectively provide a defined reception space, receiving audio signals at a controller from the microphone arrays in the defined reception space, configuring the controller with known locations of each of the microphone arrays, assigning each of the sub-regions to at least one of the microphone arrays based on the known locations, and creating beamform tracking configurations for each of the microphone arrays based on their assigned sub-regions.
US11676617B2
An acoustic noise suppressing apparatus includes a sound pickup circuit, a first and second suppression circuits, and an output signal selection circuit. The sound pickup circuit picks up sound. The first suppression circuit processes the sound, in which the first suppression circuit is configured to calculate a first suppression sound signal in which acoustic noise is suppressed from the sound by using a first algorithm suitable for multiple sound sources. The second suppression circuit processes the audio signal in parallel with the first suppression circuit, in which the second suppression circuit is configured to calculate a second suppression sound signal in which acoustic noise is suppressed from the sound signal by using a second algorithm suitable for a single sound source. The output signal selection circuit outputs only one of the first suppression audio signal and the second suppression audio signal.
US11676607B2
A method for denormalizing raw speech recognition results. The method includes receiving a speech input from a user and obtaining context metadata associated with the speech input. The context metadata indicates that the speech input includes dictated speech directed to a messaging application that is currently executing on a user device for inclusion in an electronic message. The method further includes generating, using a speech recognizer, a raw speech recognition result including an explicit punctuation term spoken by the user and corresponding to the speech input. Based on the context metadata, the method includes denormalizing the generated raw speech recognition result into denormalized text by applying an explicit punctuation denormalizer to convert the explicit punctuation term in the raw speech recognition result into a corresponding punctuation symbol and displaying the denormalized text including the corresponding punctuation symbol on a display screen of the user device.
US11676598B2
A method, computer program product, and computing system for receiving a signal from each microphone of a plurality of microphones, thus defining a plurality of signals. One or more microphone frequency responses associated with at least one microphone may be received. One or more microphone frequency response-based augmentations may be performed on the plurality of signals based upon, at least in part, the one or more microphone frequency responses, thus defining one or more microphone frequency response-based augmented signals.
US11676595B2
A reception apparatus, including processing circuitry that is configured to receive a voice command related to content from a user during presentation of the content to the user. The processing circuitry is configured to transmit the voice command to a server system for processing. The processing circuitry is configured to receive a response to the voice command from the server system. The response to the voice command is generated based on the voice command and content information for identifying the content related to the voice command.
US11676593B2
Methods, systems, and computer program products for training an artificial intelligence (AI) of a voice response system. Aspects include receiving, by the voice response system from a user, a voice command to perform a requested action and interpreting, by an AI model, the voice command. Aspects also include performing an action based on the interpretation of the voice command and receiving non-verbal feedback from the user. Aspects further include updating the AI model based on a determination that the non-verbal feedback indicates that the user is not satisfied with the action performed.
US11676589B2
Embodiments of the present invention provide for systems and methods for submitting speech queries to one or more voice assistant devices, and retrieving the responses, in a soundproof environment. The systems and methods provide for sound-dampening voice boxes that are configured to house the respective voice assistant devices, in which the sound-dampening voice boxes submit speech queries to the respective voice assistant devices, and retrieve the responses therefrom.
US11676586B2
The system provides a voice command recommendation to a user to avoid a non-voice command. The system determines a command that is expected to be received, and generates a voice command recommendation that corresponds to the predicted command. The predicted command can be based on the user's behavior, a plurality of users' behavior, environmental circumstances such as a phone call ring, or a combination thereof. The system may access one or more databases to determine the predicted command. The voice command recommendation may include a displayed notification that describes the recommended voice command, and exemplary voice inputs that are recognized. The system also activates an audio interface, such as a microphone, that is configured to receive a voice input. If the system receives a recognizable voice input at the audio interface that corresponds to the recommendation, the system performs the predicted command in response to receiving the voice input.
US11676580B2
An electronic device is provided. The electronic device includes a microphone, and at least one processor operatively connected to the microphone, wherein the at least one processor may include a buffer memory configured to store a first feature vector for a first voice signal obtained from the microphone as an inverse value, and an operation circuit configured to perform a norm operation for a first feature vector and a second feature vector, based on the second feature vector, based on a second voice signal streamed from the microphone and an inverse value of the first feature vector stored in the buffer memory, or calculate a similarity between the first feature vector and the second feature vector. In addition, various embodiments identified through the specification are possible.
US11676571B2
A device for speech generation includes one or more processors configured to receive one or more control parameters indicating target speech characteristics. The one or more processors are also configured to process, using a multi-encoder, an input representation of speech based on the one or more control parameters to generate encoded data corresponding to an audio signal that represents a version of the speech based on the target speech characteristics.
US11676567B2
A method for manufacturing a sound absorption structure comprising a cellular panel, a porous layer positioned on a cellular panel first face, a reflective layer positioned on a cellular panel second face and a plurality of acoustic elements positioned in the cellular panel. The method comprises the steps of producing, for each acoustic element, a recess in the cellular panel opening out onto the first and second faces of the cellular panel, inserting the acoustic elements into their recesses, laying an anchoring layer on the second cellular panel face, curing or polymerization at a first pressure to connect each acoustic element to the cellular panel and/or to the anchoring layer, putting in place the porous layer and the reflective layer, and curing or polymerization at a second pressure to connect the porous layer and the reflective layer to the cellular panel.
US11676562B1
A synthetic reed for use with a woodwind instrument includes a synthetic resin matrix with randomly distributed suspended cane particles. Synthetic fibers, which may comprise one or more different material filaments, may also be impregnated within resin matrix. The cane particles can be present in a concentration of approximately 0.5-10% by volume and at least a majority of the cane particles in the resin matrix can be less than 100 micrometers. The matrix may be formed from two components including an epoxy resin component and a hardener component. The reed exhibits improved strength properties usually provided by synthetics with the warmer sonic properties associated with natural cane reeds and preferred by musicians.
US11676551B2
Embodiments of the present disclosure provide a gamma voltage correction method and device, and a display device, wherein a candidate refresh rate last determined in a current frame period of a display panel is used as a target refresh rate, and a gamma voltage corresponding to the target refresh rate is used as a gamma voltage at a display phase in a next frame period of the display panel to perform brightness correction, so that flashing of the display panel during refresh rate switching is prevented, and storage resources are saved.
US11676537B2
Provided is a pixel driving circuit, a display panel and a display apparatus. The pixel driving circuit includes: driving transistor having gate electrode connected to first node, first electrode connected to second node, and second electrode electrically connected to third node coupled to light emitting element; storage capacitor connected to the first node; and M first transistors having M first and second electrodes connected to the first node M functional signal terminals, respectively, M≥1. A driving cycle of the pixel driving circuit includes light-emitting stage and N non-light-emitting stages, N≥M. The M first transistors are respectively turned on in the N non-light-emitting stages, and the M first transistors are all turned off in the light-emitting stage. One of the N non-light-emitting stages includes first non-light-emitting stage adjacent to the light-emitting stage. Channel length L and width W of the first transistor satisfy:
W
×
L
<
C
st
×
Δ
V
∑
i
=
1
i
=
M
C
ox
×
(
V
G
_
off
-
V
N
1
)
2
❘
"\[LeftBracketingBar]"
V
G
_
off
-
V
N
1
❘
"\[RightBracketingBar]"
+
❘
"\[LeftBracketingBar]"
V
G
_
off
-
V
X
_
i
❘
"\[RightBracketingBar]"
.
US11676536B2
A display device includes a display panel including pixels coupled to a first scan line and a data line, a power supply to supply voltages, a scan driver to provide a first scan signal to the first scan line a plurality of times for a first frame period (FFP), a data driver to supply a data signal to the data line, and a timing controller to control driving of components. The FFP includes: a first active period (FAP), in which the data signal is supplied; and a first blank period (FBP), in which the data signal is not supplied. The power supply provides on-bias power having a first voltage level (FVL) in the FAP, and provides on-bias power having a second voltage level (SVL) in the FBP. The FBP following the FAP includes a first dimming period in which the on-bias power gradually changes from the FVL to the SVL.
US11676533B2
A signal processing device and an image display apparatus including the same are disclosed. The image display apparatus includes a display including an organic light emitting diode panel and a signal processor configured to control the display, wherein the signal processor is configured to perform luminance conversion based on a first luminance conversion pattern in the case in which the luminance level of an input image is greater a first level and to perform luminance conversion based on a second luminance conversion pattern having a higher luminance level than the first luminance conversion pattern in the case in which the luminance level of the input image is equal to or less than the first level, whereby low gray level expression of the organic light emitting diode panel is improved.
US11676530B2
A display apparatus of a plurality of display apparatuses constituting a wall display includes a first board, a second board, and a plurality of display modules. The first board includes a first communication interface including a circuitry for wireless transmission, and a timing controller configured to, in response to information on an image being received, generate a plurality of driving signals for driving the plurality of display modules based on the received information and transmit the plurality of driving signals to the second board through the first communication interface. The second board includes a second communication interface including circuitry for wireless reception, a plurality of interfaces electrically connected to the plurality of display modules, and an IC chip configured to, based on the plurality of driving signals being received through the second interface, provide each of the received driving signals to each of the display modules.
US11676524B2
The present disclosure provides a shift register, a gate driving circuit and a display panel, and belongs to the field of display technology. The shift register of the present disclosure includes: an input circuit configured to precharge and reset a pull-up node; one pull-down control circuit being electrically connected to one pull-down circuit through a pull-down node; the pull-down control circuit being configured to control a potential at the pull-down node under a first power voltage; each pull-down circuit being configured to pull down the potential at the pull-down node in response to a potential at the pull-up node; an output circuit configured to output a clock signal through a signal output terminal in response to the potential at the pull-up node; one first noise reduction circuit connected to one pull-down node.
US11676523B2
A method of operating a display device includes: receiving image data at an input frame frequency; generating a modulated clock signal by modulating an input clock signal according to a modulation frequency; randomly selecting an output frame frequency within a data frequency selection range, the input frame frequency being within the data frequency selection range; determining an output start timing of the image data based on the output frame frequency; initiating, at the output start timing, output of the image data in synchronization with the modulated clock signal; and displaying an image based on the outputted image data.
US11676520B2
The present disclosure relates to a technology for a power management device applied to a display device, in which driving voltages having different levels are supplied to driving devices having different sizes of load in different times, and this allows all of the driving devices to stably receive voltages within a limited range even though the number of driving devices increases according to the enlargement of a display panel.
US11676519B2
The present embodiment provides a technology for sensing a common mode voltage in the positive line and negative line of a transmission line for image data and determining whether noise occurs in the image data transmitted through the transmission line by comparing the common mode voltage with a set reference voltage.
US11676515B2
Systems and methods are provided for encrypting and decrypting data using visually encoded ciphertext. The method includes selecting, using a graphical user interface coupled to an electronic device, one or more portions of a document to be encrypted, visually encoding the selected one or more portions of the document, generating a visual representation, wherein the visual representation corresponds to encrypted content, and replacing the selected one or more portions of the document with the visual representation. The method further includes displaying, to the user, the visual representation, capturing the visual representation using one or more cameras, decoding the visual representation, obtaining the encrypted content, and decrypting the encrypted content, generating decrypted content.
US11676510B2
Described herein are examples of welding simulation systems with observation devices that facilitate the types of group interactions that occur in conventional weld training. In some examples, third party observers may use the observation devices to observe the welding simulation from their own perspectives. In some examples, this may allow for traditional “over the shoulder” observation, and/or group/classroom observation and interaction.
US11676508B2
A cloud-based performance enhancement service captures and collects data relating to interactions of users with industrial automation systems of multiple industrial customers for storage and analysis on a cloud platform. The service employs a performance enhancement component that analyzes the data to facilitate determining correlations between certain user interactions and favorable performance of an industrial automation system, determining user interactions that are less favorable or unsafe, determining alternative actions that a user can take to achieve a same or similar preferred operational result, generating recommendations relating to the alternative actions, determining or designing components or techniques that can automate a preferred user action, determining improved user assignments in connection with the industrial automation system, and/or generating training modules or presentations based on preferred user actions that can be used to train users to more efficiently interact with an industrial automation system to achieve improved system performance.
US11676503B2
Systems and methods are provided by which a machine learning model may be executed to determine the probability that a given user will respond correctly to a given assessment item of a digital assessment on their first attempt. The machine learning model may process feature data corresponding to the user and the assessment item in order to determine the probability. The feature data may be calculated periodically and/or in real time or near-real time according to a machine learning model definition based on assessment data corresponding to the user's activity and/or based on responses submitted by all users to the assessment item and/or to content related to the assessment item.
US11676499B2
Methods and system for alerting a Visual Decent Point (VDP) in an aircraft system. The methods and systems retrieve runway altitude data and Minimum Descent Altitude (MDA) data from an avionics database for a target runway. Data in the avionics database for the target runway does not include a published VDP. The method includes calculating the VDP based on a difference between the runway altitude data and the MDA so as to achieve a target downward acceptable glidepath angle during final descent from the MDA to the target runway. The method includes outputting an alert of the VDP by an output device of the aircraft system.
US11676498B2
A system and method for enhanced vehicle efficiency through smart automation for an onboard weather update is provided. The system comprises a processor, and a non-transitory processor readable medium including instructions, executable by the processor, to perform a method comprising: receiving vehicle data from an onboard vehicle data source; receiving real-time weather data from one or more weather data sources; detecting when onboard forecast weather data is out-of-date or irrelevant based on the vehicle data and the real-time weather data; estimating one or more potential benefits from an update of the onboard forecast weather data; and activating the update of the onboard forecast weather data.
US11676496B2
Systems and methods to identify a query parameter in an incoming flight voice or data communication to respond to a request. A processing system configured to: in response to receipt of a clearance message, decode the clearance message to determine whether the clearance message contains a command instruction or clearance data for a flight, and to present the command instruction to a pilot as notice to execute the command instruction or if available, obtain at least one query parameter from the clearance data to configure in a query operation to present in response to a pilot question about the command instruction. In response to receipt of the voice or data communication, determine further an intent within the voice or data communication of a question or instruction voiced by applying an acoustic model for tagging identified parts about the question or instruction voiced with query parameters in response to the pilot.
US11676489B2
An operation schedule changer can execute, as a schedule change process for changing a normal operation schedule, an advancing change process, a delay change process, and a cut-in change process. The schedule changer executes one of the advancing change process, the delay change process, or the cut-in change process based on a boarding demand.
US11676487B2
A parking assist system wherein the system includes a sensor device configured to detect parking space data and transmit it to a post device, wherein the sensor device includes an energy storage device, and a communication device. The communication device may include a camera. The system includes a post device in communication with the sensor device, the system configured to collect parking space data transmitted from a sensor device and communicate parking space occupancy to a driver, wherein the post device includes a vertical post, an energy storage device, a communication device, and a light-emitter. The system may utilize one or more machine-learning algorithms and generate one or more machine-learning models to detect parking space occupancy.
US11676484B2
A method of operating an incursion warning system for a work zone, the incursion warning system comprising: a plurality of sensor units arranged about a perimeter of the work zone; and a plurality of alarm units each comprising one or more of an audio, visual or haptic alarm operable to warn a workforce of a potential danger in response to a detected breach into the work area; the method comprising: establishing a geo-zone delimiting a geographical area that includes at least part of the work zone; and a set of rules associated with the geo-zone; deriving an instruction for one of the alarm units determined to be in the geo-zone from the set of rules based on a characteristic of the alarm unit and a characteristic(s) of one or more other alarm units determined to be within the geo-zone; and wherein the instruction is derived in response to a change in a characteristic of the alarm unit and/or the one or more other alarm units and/or one or more of the sensor units within the geo-zone.
US11676469B2
Techniques and examples pertaining to a tracking method using a two-component tracking device are described. The tracking device includes two components paired with one another: a first component that is specific to a subject the tracking device is intended to track, and a second component that is generic. The second component is capable of establishing a wireless connection with a cellular network, as well as collecting location information of the second component itself. The tracking method involves receiving from the cellular network a set of requirements associated with the subject, and triggering an action based on the set of requirements and the location information collected. The tracking method enables tracking of multiple subjects without a pairing mistake. Namely, a mismatch between multiple subjects to be tracked and multiple tracking devices intended to track the subjects can be avoided.
US11676457B2
An electronic game machine comprises a display, an interface device for receiving input from a human player and a controller. The controller, responsive to initiation of a machine implemented game, prompts the human player to select to play a first player state or a second player state. The controller receives in response to the prompt, an input from the human player through the interface device whereby the human player chooses the first player state or the second player state. The first player state enables the human player to select at least one of at least two predefined selections responsive to a game state and the second player state defines the response of the humane player according to predetermined rules. If the human player has selected the first player state, the controller receives the selection from the human player of the at least one of the at least two predefined selections, determines a predetermined response of the electronic game machine responsive to the selection of the human player and determines an outcome to the machine implemented game responsive to the selection of the human player and the predetermined response of the electronic game machine. If the human player has selected the second player state, the controller automatically responds to selections of the electronic game machine in accordance with the predetermined rules and determines the outcome to the machine implemented game responsive to the automatic responses of the human player. The controller awards the wagered units responsive to the determined outcome. If the human player and the electronic game machine each have remaining wagering units, the controller implements a further round of wagering.
US11676454B2
A credit-substitution symbol mechanic for a gaming device is described. The credit-substitution symbol mechanic randomly triggers an add-substitution symbol feature and randomly determines a number of substitution symbols to add to a first reel to be displayed in a reel area. The credit-substitution symbol mechanic randomly determines a substitution symbol from the number of substitution symbols added to the first reel is a credit-substitution symbol and determines that the credit-substitution symbol is part of a payline. The credit-substitution symbol substitutes as a different symbol type when forming the payline. The credit-substitution symbol mechanic performs a first payout for the payline that pays out a payline award and performs a second payout for the payline that pays out a credit value of the credit-substitution symbol.
US11676449B2
On a network of electronic gaming machines, data regarding the performance of the machines or the players of the machines is collected and processed to make predictions of future jackpots and recommendations of games to play. The predictions and recommendations are delivered via at least one virtual persona that communicates with players or potential players via displays in a casino or on a web browser, via smartphone. Players can conduct conversations with the persona using cellular telephone, text messaging, or other types of Internet communications.
US11676439B2
A face authentication system including a storage to store a face image of each of a plurality of persons who are permitted to enter in advance and information on a zone; an image processing unit to detect a face of at least one person in an image captured by at least one camera having identification information, and generate a face cut-out image of the at least one person; a zone determination unit to determine a zone where a person in the face cut-out image is captured; a collation unit to collate the face cut-out image with the face image of each of the plurality of persons; and an output control unit to, when it is determined that there is not a face of a person appearing in the face cut-out image, superimpose a detection frame indicating a face of a person who is not permitted to enter the zone.
US11676434B2
A method includes performing, by a terminal with an access card, a first relay attack check for the access card in accordance with a local value associated with the terminal and a local value associated with the access card; determining, by the terminal, that the access card has passed the first relay attack check, and based thereon, performing, by the terminal with the access card, an authentication check of the access card in accordance with the local value associated with the terminal, the local value associated with the access card, and a local challenge value associated with the terminal; and determining, by the terminal, that the access card has passed the first relay attack check and the authentication check, and based thereon, validating, by the terminal, the access card.
US11676433B2
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for enhanced property access with video analytics. In some implementations, images of a first area captured by a camera are obtained. A number of persons in the first area is determined from the images. Data indicating one or more unique identifications is received. A number of persons who are authorized to access a second area are determined. Access is provided to the second area.
US11676426B2
Smart tolling for vehicles is provided. A toll advertisement message (TAM) is received by a vehicle, broadcast from a road-side unit (RSU) via V2X communication, the TAM defining a plurality of toll road tariff data elements, each of the toll road tariff data elements specifying a set of tolling factors indexed by a unique toll context identifier. Roadway usage of the vehicle is determined. A charge for the roadway usage is determined according to the set of tolling factors of the TAM. A toll usage message (TUM) is sent via the V2X communication, the TUM indicating, to the RSU, the tariff for the roadway usage of the vehicle.
US11676417B2
A method for detecting spoof fingerprints detected using an optical fingerprint sensor and polarization includes controlling a display of an electronic device to output a pattern of light to illuminate a fingerprint sample touching the display; blocking smaller-angle light from impinging a plurality of anti-spoof photodiodes of the pixel array; filtering larger-angle light incident on the plurality of anti-spoof photodiodes to at least one polarization direction; detecting the larger-angle light using the plurality of anti-spoof photodiodes; correlating the larger-angle light with the pattern of light; determining the fingerprint spoofing based at least in part on the correlation of the larger-angle light and the pattern of light; and wherein the plurality of anti-spoof photodiodes is interleaved with a plurality of imaging photodiodes such that each anti-spoof photodiode of the plurality of anti-spoof photodiodes is between adjacent imaging photodiodes of the plurality of imaging photodiodes.
US11676416B1
An optical identification device includes a circuit board, a top cover, an optical detection module and an optical channel. The top cover is disposed on the circuit board and has an identification region. The optical detection module is disposed on the circuit board and located inside the top cover. The optical detection module includes an optical emitter and an optical receiver. The optical emitter is adapted to emit an illumination beam toward the top cover. The optical receiver is adapted to receive the illumination beam reflected from the top cover. The optical channel is disposed between the optical emitter and the top cover, and adapted to block the illumination beam from projecting onto a lower surface of the identification region facing the optical receiver.
US11676410B1
Systems and methods are described for natural language processing of a text sequence. The system can identify a set of text and location information for the set of text in an image. The set of text may correspond to an input sequence space. The system can project embeddings of the text into a latent space for processing. Further, the system can reproject the processed embeddings from the latent space to the input sequence space. The system may perform multiple stages of projecting the embeddings to the latent space and reprojecting the processed embeddings from the latent space to the input sequence space. The system can route the reprojected embeddings to a neural network that can identify class predictions for elements of the set of text.
US11676397B2
A system for detecting an object collision includes a processor and a memory in communication with the processor with an objection collision detection module. The objection collision detection module has instructions that, when executed by the processor, cause the processor to obtain a first image and a second image of a scene from a camera sensor mounted to a vehicle, determine a change amount between the first image and the second image, and based on the change amount, determine at least one of that an object is approaching the vehicle or the object has collided with the vehicle. The change amount represents the number of pixels with the same location value that changed intensity values between the first and second images.
US11676391B2
A computer accesses a plurality of image frames. The computer identifies, within the plurality of image frames, a plurality of vehicle front vehicle back detections. The computer pairs at least a subset of the plurality of vehicle back detections with vehicle front detections. A given vehicle back detection is paired with a given vehicle front detection based on camera angle relative to a predefined axis. The computer assigns, using each of a plurality of pools, a score to each vehicle front detection—vehicle back detection pair, each non-paired vehicle front detection, and each non-paired vehicle back detection. Each pool comprises a data structure representing a scoring mechanism and a set of detections. The computer assigns each detection to a pool that assigned a highest score to that detection. Upon determining that a given pool comprises at least n detections: the computer labels the given pool as representing a specific vehicle.
US11676386B2
The present disclosure provides a method and system for automated analysis of human behavior. The automated analysis of human behavior is performed to determine fraudulent behavior. The system collects a technical data and a video data from one or more data sources and one or more video sources. In addition, the system trains a fraudulent behavior detection system with the collected technical data and the video data in real-time. Further, the system receives a live video stream data from the one or more video sources. Furthermore, the system analyzes the live video stream data received from the one or more video sources installed at the facility in real-time. Moreover, the system predicts likelihood of fraudulent behavior of humans based on analyzation of the live video stream data. Also, the system performs prediction to alarm concerned authorities of the facility about likelihood of fraudulent behavior.
US11676371B2
An apparatus for processing a neural network comprises an image memory into which an input image is written tile-by-tile, each tile overlapping a previous tile to a limited extent; a weights memory for storing weight information for a plurality of convolutional layers of a neural network, including at least two pooling layers; and a layer processing engine configured to combine information from the image and weights memories to generate an output map and to write the output map to image memory. The apparatus is configured to store a limited number of values from adjacent a boundary of an output map for a given layer. The layer processing engine is configured to combine the output map values from a previously processed image tile with the information from the image memory and the weights when generating an output map for a layer of the neural network following the given layer.
US11676370B2
A method is provided for Cross Video Temporal Difference (CVTD) learning. The method adapts a source domain video to a target domain video using a CVTD loss. The source domain video is annotated, and the target domain video is unannotated. The CVTD loss is computed by quantizing clips derived from the source and target domain videos by dividing the source domain video into source domain clips and the target domain video into target domain clips. The CVTD loss is further computed by sampling two clips from each of the source domain clips and the target domain clips to obtain four sampled clips including a first source domain clip, a second source domain clip, a first target domain clip, and a second target domain clip. The CVTD loss is computed as |(second source domain clip−first source domain clip)−(second target domain clip−first target domain clip)|.
US11676366B1
Image features are extracted from multiple variably-illuminated images, with the images acquired from a multi-camera array microscope. A sequence of images per camera is captured, with the illumination pattern varied between each image capture. After image capture, a post-processing algorithm finds keypoints of interest within the images captured by each camera. These features can be used to assist with stitching together images from the multi-camera array, in addition to image compression, object tracking or other automated tasks.
US11676365B2
An Artificial Intelligence (AI) based automatic damage detection and estimation system receives images of a damaged object. The images are converted into monochrome versions if needed and analyzed by an ensemble machine learning (ML) cause prediction model that includes a plurality of sub-models that are each trained to identify a cause of damage to a corresponding portion for the damaged object from a plurality of causes. In addition, an explanation for the selection of the cause from the plurality of causes is also provided. The explanation includes image portions and pixels of images that enabled the cause prediction model to select the cause of damage. An ML parts identification model is also employed to identify and labels parts of the damaged object which are repairable and parts that are damaged and need replacement. The cost estimation for the repair and restoration of the damaged object can also be generated.
US11676363B2
A digital image is stored on a server. One or more areas of interest are determined within the digital image. One or more sets of features for each of the one or more areas of interest within the digital image are extracted. The digital image is parsed into a set of image layers, wherein a subset of image layers is associated with a first set of features of the one or more sets of features. A request to download the image from the server is received from a client. The subset of image layers is sent to the client. In response to sending the subset, the remainder of the set of images is sent.
US11676361B2
A method includes: acquiring data including moving image obtained by photographing a target and annotation images each indicative of a region of the target in each of frame images in the moving image; executing a process using the data. The process includes: detecting the target in the frame images; inputting, to an auto-encoder, an image obtained by combining partial images including the target and peripheral region images of the target detected in a given number of preceding and succeeding second frame images in a time series of the moving image of a first frame image; inputting a partial image corresponding to the first frame image to a neural network performing a segmentation; updating parameter of the auto-encoder and the neural network based on a difference between an image obtained by combining images from the auto-encoder and the neural network and a partial image of the annotation image.
US11676356B2
Techniques for providing indirect local geo-positioning using AR markers are disclosed. A first movable AR marker can be located or found by a computing device. A location of the first movable AR marker can be known and shared with the computing device. The location of the first movable AR marker can be based on distance between the first movable AR marker and a fixed AR marker. A distance to the first movable AR marker can be determined. Based on the known location of the first movable AR marker and the distance to the first movable AR marker from the computing device, an estimate of the location of the computing device can be determined without having line-of-sight (LOS) to the fixed AR marker.
US11676352B2
Adaptive Control Driven System/ACDS 99, supports visual enhancement, mitigation of challenges and with basic image modification algorithms and any known hardware from contact lenses to IOLs to AR hardware glasses, and enables users to enhance vision with user interface based on a series of adjustments that are applied to move, modify, or reshape image sets and components with full advantage of the remaining useful retinal area, thus addressing aspects of visual challenges heretofore inaccessible by devices which learn needed adjustments.
US11676347B2
A method for virtual try-on of user-wearable items is provided. The method includes capturing, in a client device, a first image of a user, the first image including a reference token for a user-wearable item and displaying, in the client device, images of multiple user-wearable items for the user, receiving an input from the user, the input indicative of a selected user-wearable item from the user-wearable items on display. The method also includes segmenting the first image to separate the reference token from a background comprising a portion of a physiognomy of the user, replacing a segment of the reference token in the first image with an image of the selected user-wearable item in a second image of the user, and displaying, in the client device, the second image of the user.
US11676342B2
The subject technology generates depth data using a machine learning model based at least in part on captured image data from at least one camera of a client device. The subject technology applies, to the captured image data and the generated depth data, a 3D effect based at least in part on an augmented reality content generator. The subject technology generates a depth map using at least the depth data. The subject technology generates a packed depth map based at least in part on the depth map, the generating the packed depth map. The subject technology converts a single channel floating point texture to a raw depth map. The subject technology generates multiple channels based at least in part on the raw depth map. The subject technology generates a segmentation mask based at least on the captured image data. The subject technology performs background inpainting and blurring of the captured image data using at least the segmentation mask to generate background inpainted image data.
US11676339B2
Methods and tessellation modules for tessellating a patch to generate tessellated geometry data representing the tessellated patch. Received geometry data representing a patch is processed to identify tessellation factors of the patch. Based on the identified tessellation factors of the patch, tessellation instances to be used in tessellating the patch are determined. The tessellation instances are allocated amongst a plurality of tessellation pipelines that operate in parallel, wherein a respective set of one or more of the tessellation instances is allocated to each of the tessellation pipelines, and wherein each of the tessellation pipelines generates tessellated geometry data associated with the respective allocated set of one or more of the tessellation instances.
US11676336B2
A method of generating identifiers (IDs) for primitives and optionally vertices during tessellation. The IDs include a binary sequence of bits that represents the sub-division steps taken during the tessellation process and so encodes the way in which tessellation has been performed. Such an ID may subsequently be used to generate a random primitive or vertex and hence recalculate vertex data for that primitive or vertex.
US11676333B2
Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
US11676321B2
A method and system for performing graphics processing is provided. The method and system includes storing stencil buffer values in a stencil buffer; generating either or both of a reference value and a source value in a fragment shader; comparing the stencil buffer values against the reference value; and processing a fragment based on the comparing the stencil buffer values against the reference value.
US11676318B2
Provided is an image processing apparatus that reduces the unnaturalness of variable printing. The terminal is this image processing apparatus for designing variable printing. The data acquisition unit acquires form data and variable data for variable printing. The variable drawing unit draws variable data as an aggregate figure with respect to the form data acquired by the data acquisition unit at an area where the drawing may be affected. The output unit outputs an aggregate figure drawn by the variable drawing unit.
US11676317B2
Composite emoji images may be generated based on user-selected input feed types associated with various Internet of Things (IoT) device input feeds. A plurality of input feed type indicators corresponding to a plurality of input feed types may be displayed for user selection. The plurality of input feed types may be associated with a plurality of IoT device input feeds. A user selection of at least some of the plurality of input feed types may be received. A composite emoji image may be generated based on a composite of a base template emoji and individual emoji image layer portions that are generated according to the at least some of the plurality of input feed types of the user selection. For each real-time IoT device input feed, a current emoji image layer portion associated with the feed may be regularly updated for display to better enable the user selection.
US11676314B2
Boundary correspondence determination techniques are described for digital objects as implemented by a boundary correspondence system. In an implementation, the boundary correspondence system partitions outer boundaries of first and second digital objects into a first plurality of cuts and a second plurality of cuts, respectively. A set of corresponding cut pairs are then determined based on a comparison of the first plurality of cuts with the second plurality of cuts. Further, corresponding anchor point pairs are determined based on a comparison of anchor points of the set of corresponding cut pairs. The boundary correspondence system then generates and outputs a mapping of the first digital object to the second digital object based on the determined correspondence of anchor point pairs.
US11676313B2
One embodiment of a disclosed system, method, and computer readable storage medium which includes an algorithm for generating a vector graphic based on a raster graphic input. A tablet scribe system identifies a boundary of a raster graphic image. The boundary is comprised of contrasting pixels in the raster graphic. The system determines a slope for each line segment of the raster graphic boundary. Based on a comparison of the slope for the adjacent line segments, the system generates a contour replaces line segments with equivalent slopes wherein each line segments represents a point on the contour. The system condenses the contour by removing redundant points on the contour based on their position relative to neighboring points and converts the edges of one or more remaining line segments into continuous curves on the contour.
US11676307B2
According to an aspect of an embodiment, operations may comprise capturing, at a vehicle as the vehicle travels, LIDAR scans and camera images. The operations may further comprise selecting, at the vehicle as the vehicle travels, a subset of the LIDAR scans and the camera images that are determined to be useful for calibration. The operations may further comprise computing, at the vehicle as the vehicle travels, LIDAR-to-camera transformations for the subset of the LIDAR scans and the camera images using an optimization algorithm. The operations may further comprise calibrating, at the vehicle as the vehicle travels, one or more sensors of the vehicle based on the LIDAR-to-camera transformations.
US11676303B2
A system includes a processor configured to request capture of image data of an environment surrounding the user, responsive to a margin of error of a detected location of a user being above a predefined threshold. The processor is also configured to process the image data to determine an actual user location relative to a plurality of objects, having known positions, identifiable in the image data and replace the detected location with the determined actual user location.
US11676300B2
A method for determining a position of a tow ball in an image. The method includes obtaining at least one real-time image from a vehicle. The at least one real-time image is processed with a controller on the vehicle to obtain a feature patch (f) describing at least one real-time image. A convolution is performed of the feature patch (f) and each filter (h) from a set of filters (H) with the filter (h) being based on data representative of known tow hitches fixed to the vehicle. A location of a tow ball on the tow hitch is identified in the at least one real-time image is based on the convolution between the feature patch (f) and each filter (h) from the set of filters (H).
US11676296B2
Techniques for augmenting a reality captured by an image capture device are disclosed. In one example, a system includes an image capture device that generates a two-dimensional frame at a local pose. The system further includes a computation engine executing on one or more processors that queries, based on an estimated pose prior, a reference database of three-dimensional mapping information to obtain an estimated view of the three-dimensional mapping information at the estimated pose prior. The computation engine processes the estimated view at the estimated pose prior to generate semantically segmented sub-views of the estimated view. The computation engine correlates, based on at least one of the semantically segmented sub-views of the estimated view, the estimated view to the two-dimensional frame. Based on the correlation, the computation engine generates and outputs data for augmenting a reality represented in at least one frame captured by the image capture device.
US11676293B2
A method for depth sensing from an image of a projected pattern is performed at an electronic device with one or more processors and memory. The method includes receiving an image of a projection of an illumination pattern; for a portion of the image, selecting a candidate image of a plurality of candidate images by comparing the portion of the image with a plurality of candidate images; and determining a depth for the portion of the image based on depth information associated with the selected candidate image. Related electronic devices and computer readable storage medium are also disclosed.
US11676292B2
Systems, methods, and computer program products are described that include obtaining, at a processor, a first image from an image capture device onboard a computing device, detecting, using the processor and at least one sensor, a device orientation of the computing device associated with capture of the first image, determining, based on the device orientation and a tracking stack associated with the computing device, a rotation angle in which to rotate the first image, rotating the first image to the rotation angle to generate a second image, and generating neural network based estimates associated with the first image and the second image.
US11676289B2
An object tracking system that includes a plurality of sensors and a tracking system. A first sensor from the plurality of sensors is configured to capture a first frame of a global plane for at least a portion of the space. The tracking system is configured to determine a pixel location in the first frame for an object located in the space, and to apply a homography to the pixel location to determine a coordinate in the global plane. The homography is configured to translate between pixel locations in the first frame and coordinates in the global plane.
US11676283B2
The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate refined segmentation masks for digital visual media items. For example, in one or more embodiments, the disclosed systems utilize a segmentation refinement neural network to generate an initial segmentation mask for a digital visual media item. The disclosed systems further utilize the segmentation refinement neural network to generate one or more refined segmentation masks based on uncertainly classified pixels identified from the initial segmentation mask. To illustrate, in some implementations, the disclosed systems utilize the segmentation refinement neural network to redetermine whether a set of uncertain pixels corresponds to one or more objects depicted in the digital visual media item based on low-level (e.g., local) feature values extracted from feature maps generated for the digital visual media item.
US11676281B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for segmenting a medical image. In one aspect, a method comprises: receiving a medical image that is captured using a medical imaging modality and that depicts a region of tissue in a body; and processing the medical image using a segmentation neural network to generate a segmentation output. The segmentation neural network can include a sequence of multiple encoder blocks and a decoder subnetwork. Training the segmentation neural network can include determining a set of error values for a segmentation channel; identifying the highest error values from the set of error values for the segmentation channel; and determining a segmentation loss based on the highest error values identified for the segmentation channel.
US11676280B2
There is provided a method of processing 2D ultrasound images for computing clinical parameter(s) of a right ventricle (RV), comprising: selecting one 2D ultrasound image of 2D ultrasound images depicting the RV, interpolating an inner contour of an endocardial border of the RV for the selected 2D image, tracking the interpolated inner contour obtained for the one 2D ultrasound image over the 2D images over cardiac cycle(s), computing a RV area of the RV for each respective 2D image according to the tracked interpolated inner contour, identifying a first 2D image depicting an end-diastole (ED) state according to a maximal value of the RV area for the 2D images, and a second 2D US image depicting an end-systole (ES) state according to minimal value of the RV area for the 2D images, and computing clinical parameter(s) of the RV according to the identified first and second 2D images.
US11676279B2
The present disclosure relates to systems, non-transitory computer-readable media, and methods that utilize a deep neural network to process object user indicators and an initial object segmentation from a digital image to efficiently and flexibly generate accurate object segmentations. In particular, the disclosed systems can determine an initial object segmentation for the digital image (e.g., utilizing an object segmentation model or interactive selection processes). In addition, the disclosed systems can identify an object user indicator for correcting the initial object segmentation and generate a distance map reflecting distances between pixels of the digital image and the object user indicator. The disclosed systems can generate an image-interaction-segmentation triplet by combining the digital image, the initial object segmentation, and the distance map. By processing the image-interaction-segmentation triplet utilizing the segmentation neural network, the disclosed systems can provide an updated object segmentation for display to a client device.
US11676277B2
From a plurality of medical images in time phases, a target site is extracted from at least one medical image, a reference point is set on each of a target-site side, and a periphery side of the target site which are on across from each other over an outline of the extracted target site, and movement information for the reference points is calculated.
US11676273B2
The method for display may include obtaining an image to be displayed by at least one of the one or more display devices. The image may have a first region. The method may also include acquiring image information to be displayed in a second region that is displayed in the at least one of the one or more display devices. The image information may be related to the image. The method may also include acquiring a display standard associated with the image. The method may also include storing the image to at least one of the one or more storage devices. The method may also include generating a first determination that a display of the second region does not satisfy the display standard when storing the image. The method may also include generating a response based on a result of the first determination.
US11676264B2
A system for characterizing a specimen is disclosed. In one embodiment, the system includes a characterization sub-system configured to acquire one or more images a specimen, and a controller communicatively coupled to the characterization sub-system. The controller may be configured to: receive from the characterization sub-system one or more training images of one or more defects of a training specimen; generate one or more augmented images of the one or more defects of the training specimen; generate a machine learning classifier based on the one or more augmented images of the one or more defects of the training specimen; receive from the characterization sub-system one or more target images of one or more target features of a target specimen; and determine one or more defects of the one or more target features with the machine learning classifier.
US11676262B2
A method for determining part wear, such as using a wear metric, includes receiving, from a sensor, sensor data representing a surface of a wear part. The method further includes determining distances between measured points in the sensor data and points on one or more part models, which part models may include new part models and/or worn or wear limit part models. The method further includes using a bounding model that at least partially envelopes the part model(s) and the measured points to determine a direction along which the distances are measured. The method may also include quantifying wear using the measured distances.
US11676256B2
Estimating absolute geospatial accuracy in input images without the use of surveyed control points is disclosed. For example, the absolute geospatial accuracy of a satellite images may be estimated without the use of control points (GCPs). The absolute geospatial accuracy of the input images may be estimated based on a statistical measure of relative accuracies between pairs of overlapping images. The estimation of the absolute geospatial accuracy may include determining a root mean square error of the relative accuracies between pairs of overlapping images. For example, the absolute geospatial accuracy of the input images may be estimated by determining a root mean square error of the shears of respective pairs of overlapping images. The estimated absolute geospatial accuracy may be used to curate GCPs, evaluate a digital elevation map, generate a heatmap, or determine whether the adjust the images until a target absolute geospatial accuracy is met.
US11676251B2
Method and system for extracting metadata from an observed scene comprising the use of high-speed image sensor array observing the scene through a field-of-view, filtering, matching of interesting information defined as activity/incident in the observed scene with a predefined-library, adapting the filtering to enhance frequencies of interest and suppress all others, and extracting metadata of interest.
US11676248B2
Described herein are embodiments of a deep residual network dedicated to color filter array mosaic patterns. A mosaic stride convolution layer is introduced to match the mosaic pattern of a multispectral filter arrays (MSFA) or a color filter array raw image. Embodiments of a data augmentation using MSFA shifting and dynamic noise are applied to make the model robust to different noise levels. Embodiments of network optimization criteria may be created by using the noise standard deviation to normalize the L1 loss function. Comprehensive experiments demonstrate that embodiments of the disclosed deep residual network outperform the state-of-the-art denoising algorithms in MSFA field.
US11676247B2
The invention relates to reconstructing a synthetic dense super-resolution image from at least one low-information-content image, for example from a sequence of diffraction-limited images acquired by single molecule localization microscopy. After having obtained such a sequence of diffraction-limited images, a sparse localization image is reconstructed from the obtained sequence of diffraction-limited images according to single molecule localization microscopy image processing. The reconstructed sparse localization image and/or a corresponding low-resolution wide-field image are input to an artificial neural network and a synthetic dense super-resolution image is obtained from the artificial neural network, the latter being trained with training data comprising triplets of sparse localization images, at least partially corresponding low-resolution wide-field images, and corresponding dense super-resolution images, as a function of a training objective function comparing dense super-resolution images and corresponding outputs of the artificial neural network.
US11676240B2
Systems, apparatuses, and methods may provide for technology to process multi-resolution images by identifying pixels at a boundary between pixels of different resolutions, and selectively smoothing the identified pixels.
US11676232B2
Systems, methods, and computer program products for determining an application status of an applicant for an educational program may include receiving cohort performance data comprising first data entries for participants that have respectively achieved outcomes for the educational program and applicant performance data comprising second data entries for the applicant, calculating adjusted cohort performance data based on the cohort performance data and first data characteristics, providing a predictor model based on the adjusted cohort performance data and the outcomes, sequentially changing predictive parameters of the first data characteristics to create second data characteristics and creating an adjusted predictor model based on the second data characteristics and the outcomes, calculating adjusted applicant performance data based on the applicant performance data and the second data characteristics, and calculating a probability of success for the applicant in the educational program based on the adjusted applicant performance data and the adjusted predictor model.
US11676221B2
The invention relates to systems and methods for behavioral modification of users in an online community where users store or share data to help one another reach informed decisions. One aspect of the invention provides a method for encouraging active participation in an online community. The method includes: receiving information from a first user regarding a topic, receiving a request from a second user for additional information desired from the first user, and sending a personalized message to the first user requesting the additional information. Another aspect of the invention provides a computer-readable medium whose contents cause a computer to perform a method for encouraging active participation in an online community. The method includes: receiving information from a first user regarding a topic; identifying additional information desired from the first user; and sending a personalized message to the first user requesting the additional information.
US11676215B1
Embodiments are disclosed for automatically processing a claim provided by a user. Responsive to receiving a notice of loss associated with a claim of a user, a set of customer identity validation data are collected. The set of customer identity validation data may be determined to meet a pre-defined identity validation criteria. Responsive to determining that the set of customer identity validation data meets the pre-defined identity validation criteria, current claim evaluation data for the claim may be accessed. A set of predictive impact assessment scores associated with the current claim evaluation data may be determined using a predictive model. The set of current claim evaluation data may be determined to meet pre-defined claim data criteria by comparing the predictive impact assessment scores with a set of impact assessment thresholds. Responsive to determining that the set of current claim evaluation data meets the pre-defined claim data criteria, a reactive action to the claim may be determined.
US11676204B1
Systems and methods for automated digital-property analysis are disclosed. A document representing a digital property may be received and the document, or key elements and/or language characterizations representing the document, may be utilized to search one or more databases for similar documents. The search results may be ranked and displayed for review. If an indication that the search results do not correspond to the document is received, that indication may be utilized to promote registration of the document with a trade-secret registry, for provision of insurance policies, etc. Scheduled auditing may be established and utilized to confirm the digital property has not be disclosed and/or to determine a potential misappropriation event.
US11676192B1
A system for providing product recommendations to online visitors to an e-commerce website is provided. The system may include program comprising instructions that, when executed by a processor, cause the processor to sort a list of products based on a comparison of a user's interactions with the e-commerce website and previous user interactions with the same e-commerce website.
US11676189B1
The innovation disclosed and claimed herein, in one aspect thereof, comprises systems and methods for optimized communications based on a customer emotional state. In aspects of the system and method, a customer social media account is analyzed for past social media posts. Customer emotional states are determined for the past social media posts. The past social media posts are also associated with financial transactions made by the customer such that emotional states are linked to specific financial transactions. The system and method monitor the customer social media account for new social media posts. A new social media post can be detected. An emotional state can be determined for the new social media post. The system and method collect the financial transactions with the same emotional state. The system and method generate an offer for similar products and/or related to the financial transactions. The offer is communicated to the customer.
US11676185B2
The disclosure herein relates to business content analysis. In particular, the disclosure relates to systems and methods of an expense management system operable to perform automatic business documents' content analysis for generating business reports associated with automated value added tax (VAT) reclaim, Travel and Expenses (T&E) management, Import/Export management and the like. The system is further operable to provide various organizational expense management aspects for the corporate finance department and the business traveler based upon stored data. Additionally, the system is configured to use a content recognition engine, configured as an enhanced OCR mechanism used for extracting tagged text from invoice images and also provides continuous learning mechanism in a structured mode allowing classification of invoice images by type, providing continual process of improvement and betterment throughout.
US11676179B2
A client device can receive, from a data processing system, first data, the first data selected by the data processing system based on second data generated by at least one IoT device with which the client device is associated, and the first data indicating at least one advertisement. The client device can access the at least one advertisement using the first data indicating the at least one advertisement. The client device can add the at least one advertisement to the content accessed by the client device. The client device can present the content with the at least one advertisement added to the content.
US11676176B2
A method that incorporates the subject disclosure may include, for example, providing a first digital assistant to engage in a first communication exchange with a user of the first communication device where the first digital assistant has a first digital assistant persona that controls information provided by the first digital assistant during communication exchanges, analyzing user input during the first communication exchange, and adjusting the first digital assistant persona based on one or more of the user persona, user deficiency, or promotional offers. Other embodiments are disclosed.
US11676163B1
Disclosed are a computer implemented method and system for determining a likelihood of a prospective client to engage in a real estate transaction, by obtaining and/or retrieving one or more characteristics of the prospective client; extracting data regarding a digital interaction behavior of the prospective client; deriving from the retrieved/extracted data one or more digital interaction features of the prospective client directly or indirectly associated with real estate, applying a machine learning algorithm on the derived one or more digital interaction features and on the prospective client's characteristics to determine a probability, a range of probabilities or a category of likelihood of the prospective client to engage in the real-estate transaction.
US11676157B2
Systems and methods herein are developed which enable modification of an initial customized cosmetic product, wherein the initial customized cosmetic product is created based on an initial customized cosmetic product specification or an existing specification of a non-custom product. One such system and method for making a custom cosmetic product from an existing non-custom cosmetic product is configured to be capable of: characterizing a non-custom product with a known key comprised of at least one search component; providing user interaction to modify at least one of the at least one search components in this key to create a modified key; and using the modified key to produce custom product which may include determining manufacturing instructions. Such systems and methods may incorporate a custom or non-custom product attribute data base for providing product attribute data for modification and adjustment of the user search key using an adjustment service. Also incorporated herein are applications based on user interaction through two-dimensional complexion color maps derived using data associated with skin color, tone, morphology and/or biochemistry from a plurality of users.
US11676150B1
Various embodiments of the technology described herein alleviate the need to specifically request enrollment information from a user to enroll the user in a passive voice authentication program. The system can receive one or more spoken words from a user. The system can determine that a voice profile is usable for user authentication. The system can select at least one word from the one or more spoken words to enroll the user into a voice authentication program without requiring further interaction from the user. The voice authentication program enables access to secure data in response to receiving the at least one word spoken by the user. After enrollment of the user into the voice authentication program, at least one word spoken by the user is received, and the user is authenticated based on the at least one word.
US11676149B2
A system and method for routing ATM transactions. A transaction request is received at an external application programming interface (API) associated with an account holder. The external API runs on a first processor. The transaction request is validated and authorized at the external API. Information about the transaction is forwarded from the external API to an internal API associated with an automated teller machine (ATM). The internal API runs on a second processor. A unique identifier is generated for the transaction request and provided to a user. The unique identifier is received from the user at the ATM without the user presenting any card and without connecting a mobile device of the user to the ATM. The unique identifier is provided from the ATM to the internal API to confirm a validity of the transaction. The transaction is implemented at the ATM by either dispensing cash or accepting a deposit.
US11676148B2
A system and method for authenticating a candidate user accessing a host computing device as an authentic user is provided. The host computing device is in communication with an authenticating computing device. The method includes receiving, by the authenticating computing device, a request to authenticate the candidate user as an authentic user. The authentication request includes a user identifier. The method also includes retrieving, by the authenticating computing device, transaction data including payment transactions performed by the authentic user based on the user identifier. The method also includes generating, by the authenticating computing device, a challenge question and a correct answer based on the transaction data associated with the authentic user, and transmitting the challenge question for display on a candidate user computing device used by the candidate user.
US11676144B2
A computer-implemented method comprising receiving a transaction request from a first node within the plurality of nodes, the transaction request corresponding to a pending transaction between the first node and a second node; identifying a blockchain associated with the pending transaction, the blockchain including a first block instance having a hierarchy file indicating a hierarchy among the first node, the second node, and the third node; identifying a second block instance having an executable file to approve the transaction request received from the first node; executing the executable file, wherein the executable file is configured to retrieve data from a data source associated with the third node and analyze data to approve or deny the transaction request; and appending a third block instance comprising the set of transaction attributes to the blockchain.
US11676137B2
A system for assisting a payment to a passenger on a commercial passenger vehicle is disclosed. The system is located in the commercial passenger vehicle and comprises: an onboard server configured to (1) receive, from a personal electronic device associated with a passenger, a request to process a payment along with payment credential information and (2) operate to authorize the payment; a light sourcing device in communication with the onboard server and configured to receive, from the onboard server, a verification request for the payment credential information, and display a light identification (ID); and the personal electronic device in communication with the onboard server and the light sourcing device and configured to capture an image of the light ID and obtain the verification request corresponding to the payment credential information from the captured image.
US11676134B2
Embodiments for entity transaction interaction analysis and summarization by a processor. Transaction elements relating to one or more entity transaction interactions may be identifies and extracted from one or more communications. The transaction elements may be combined with one or more transaction opportunities and transaction historical data to provide a transaction summary.
US11676125B2
A system and method for third-party food and dining ordering control, comprising at least one device capable of accessing the internet which may be a mobile device or personal computing device such as a laptop or desktop, a web application, and a point-of-sale system at a restaurant or retailer, wherein users of the web application may deposit funds into an account and set regulations on what they may purchase with the deposited funds, or have an administrator set up an account for them such as a parent setting up an account for a child or a doctor setting up an account for a patient, allowing the parent or doctor or other administrator to regulate what the sub-user such as the child or patient may purchase, in keeping with budget, diet, and lifestyle restrictions, and which may utilize zero-step authentication to allow for seamless use of the service at certain establishments.
US11676124B2
A checkout apparatus includes a memory that stores first information about one or more commodities registered in a registration process, a first interface configured to acquire an image of a predetermined region where registered commodities are to be placed, and a processor configured to identify commodities in the image acquired via the first interface by object recognition, determine whether each of the identified commodities is in the first information stored in the memory, and if one of the identified commodities is not in the first information, output an error signal.
US11676122B2
A distributed ledger based utility system architecture may be configured to enable secure payments, data transmission, and meter configuration of smart sensors. The utility system architecture may be a tiered architecture including multiple nodes at different levels of the architecture where each level may contain a different portion of the distributed ledger. As information is added to the distributed ledger, each portion of the distributed ledger may be updated based on whether the information is relevant to that node. The information may include rate contract transactions, meter configuration data transactions, payment transactions, or the like.
US11676115B2
An authorization system includes a database, and at least one computer server in communication with the database. The database includes a plurality of database records, each including an account number and an associated card number. Each card number has fewer digits than the associated account number. The server is configured to receive, from a communications terminal, a request message that initiates a transaction with the server. The server is configured to request an authentication credential from the terminal, and in the database locate the card number that matches the received authentication credential and locate the account number that is associated with the located card number. The server is configured to request authorization of a test transaction using the account number, receive an authorization response confirming authorization of the test transaction, and authorize the initiated transaction in response to the authorization response. The test transaction is different from the initiated transaction.
US11676109B2
Methods, apparatus, systems, and computer-readable media are provided for increasing dimensionality of data structures associated with filling positions. In some implementations, a prediction of desired experience for a given position to be filled may be used to increase the dimensionality of a searchable data structure that represents the given position. For example, the predicted desired experience may be incorporated into a searchable field of the data structure. Among other things, increasing the dimensionality of the data structure may facilitate more granular searching of positions and guided creation of new positions to be filled. In some implementations, a predicted desired experience may be used to notify a user posting a new position whether a specified desired experience corresponds to a predicted desired experience.
US11676098B2
Managing digital asset representation of physical assets in IoT systems and environments. A digital twin is created, tracked, and modified throughout the physical asset's lifetime using a digital registry having a data record including a unique identifier (optionally encrypted) and a storage device location information for the digital twin. A physical tag is coupled to the physical asset and scanned for read and write operations from and to the digital twin. The digital twin can move to a new storage device across a cloud environment and the registry maintains consistent access.
US11676079B2
A utility employs a method for generating available operating reserve. Electric power consumption by at least one device serviced by the utility is determined during at least one period of time to produce power consumption data, stored in a repository. A determination is made that a control event is to occur during which power is to be reduced to one or more devices. Prior to the control event and under an assumption that it is not to occur, power consumption behavior expected of the device(s) is generated for a time period during which the control event is expected to occur based on the stored power consumption data. Additionally, prior to the control event, projected energy savings resulting from the control event, and associated with a power supply value (PSV) are determined based on the devices' power consumption behavior. An amount of available operating reserve is determined based on the projected energy savings.
US11676075B2
A computer-implemented method, a computer program product, and a system for reducing labeled sample quantities required to update test sets. The computer-implemented method includes inputting a portion of unlabeled production data into a base model and generating labeled output relating to the unlabeled production data. The computer-implemented method also includes inputting the labeled output into a performance predictor. The performance predictor is a meta model of the base model that is trained with another portion of the unlabeled production data, a training set used to train the base model, and a test set portioned from the training set. The computer-implemented method further includes outputting, by the performance predictor, a performance metric relating to the labeled output produced by the trained base model. The performance metric can be any metric capable of measuring the output performance of the base model.
US11676074B2
A heterogeneous processing system for federated learning and privacy-preserving computation, including: a serial subsystem configured for distributing processing tasks and configuration information of processing tasks, the processing task indicating performing an operation corresponding to computing mode on one or more operands; and a parallel subsystem configured for, based on the configuration information, selectively obtaining at least one operand of the one or more operands from an intermediate result section on the parallel subsystem while obtaining remaining operand(s) of the one or more operands with respect to the at least one operand from the serial subsystem, and performing the operation on the operands obtained based on the configuration information.
US11676068B1
An approach includes a method, product, and apparatus for dynamically removing sparse data on a pixel by pixel basis. In some embodiments, a machine learning processing job is received. The machine learning processing job is then executed on a pixel by pixel basis by selecting non-zero data values for input into a systolic array, wherein sparse data is not selected for input into the systolic array. Subsequently, a message is generated that provides an indication of whether the execution completed successfully. In some embodiments, the machine learning processing job comprises at least a plurality of multiply and accumulate operations. In some embodiments, at least one data value equal to zero for the machine learning processing job is not input into a systolic array. In some embodiments, a plurality of weights are input into a plurality of columns for each cycle.
US11676065B2
According to one embodiment, a model training system includes a processor. The processor is configured to input a first image to a model and acquire a second image output from the model, and generate a third image by correcting the second image. The processor is configures to train the model by using the first image as input data and using the third image as teacher data.
US11676064B2
A system for controlling an operation of a machine subject to state constraints in continuous state space of the machine and subject to control input constraints in continuous control input space of the machine is provided. The apparatus includes an input interface to accept data indicative of a state of the machine, a memory configured to store an optimization problem for computing the safety margin of a state and action pair satisfying the state constraints and a control policy mapping the state of the machine within a control invariant set (CIS) to a control input satisfying the control input constraints, and a processor configured to iteratively perform a reinforcement learning (RL) algorithm to jointly control the machine and update the control policy.
US11676060B2
Digital content interaction prediction and training techniques that address imbalanced classes are described. In one or more implementations, a digital medium environment is described to predict user interaction with digital content that addresses an imbalance of numbers included in first and second classes in training data used to train a model using machine learning. The training data is received that describes the first class and the second class. A model is trained using machine learning. The training includes sampling the training data to include at least one subset of the training data from the first class and at least one subset of the training data from the second class. Iterative selections are made of a batch from the sampled training data. The iteratively selected batches are iteratively processed by a classifier implemented using machine learning to train the model.
US11676057B2
Classical and quantum computational systems and methods for principal component analysis of multi-dimensional datasets are presented. A dataset is encoded in a tensor of rank p, where p is a positive integer that may be greater than 2. The classical methods are based on linear algebra. The quantum methods achieve a quartic speedup while using exponentially smaller space than the fastest classical algorithm, and a super-polynomial speedup over classical algorithms that use only polynomial space. In particular, an improved threshold for recovery is achieved. The presented classical and quantum methods work for both even and odd ranked tensors. Accordingly, quantum computation may be applied to large-scale inference problems, e.g., machine learning applications or other applications that involve highly-dimensional datasets.
US11676056B2
A method for calculating excited state properties of a molecular system using a hybrid classical-quantum computing system includes determining, using a quantum processor and memory, a ground state wavefunction of a combination of quantum logic gates. In an embodiment, the method includes forming a set of excitation operators. In an embodiment, the method includes forming a set of commutators from the set of excitation operators and a Hamiltonian operator. In an embodiment, the method includes mapping the set of commutators onto a set of qubit states, the set of qubit states corresponding to a set of qubits of the quantum processor. In an embodiment, the method includes evaluating, using the quantum processor and memory, the set of commutators. In an embodiment, the method includes causing a quantum readout circuit to measure an excited state energy from the set of computed commutators.
US11676054B2
A non-transitory computer-readable recording medium stores therein a learning program for causing a computer to execute a process comprising: referring to, at time of learning a computation model that is a target of deep learning and has a plurality of nodes, a storage unit in which route information that indicates a calculation route followed by a tensor in each stage of learning prior to the time of learning, and statistical information regarding a position of a decimal point used in the calculation route are associated with each other; acquiring, when executing each piece of calculation processing set in each of the plurality of nodes at the time of learning, the statistical information corresponding to the route information that reaches each of the plurality of nodes; and executing the each piece of calculation processing using the position of the decimal point specified by the acquired statistical information.
US11676046B2
Triggering a prioritized alert and provisioning an action may include receiving historical data associated with a set of projects, the historical data spanning multiple consecutive time periods. A hierarchical data structure is generated that includes occurrences of performance factors in the historical data. Based on the hierarchical data structure, Bayesian scores associated with the performance factors are derived, the Bayesian scores representing likelihood of the performance factors occurring in a given project. The performance factors are ranked based on the Bayesian scores. Based on ranking, an alert and an action may be automatically triggered.
US11676038B2
Systems and methods are provided for operating to an initial optimized baseline solution to a multi-objective problem. As the initial optimized baseline solution is determined, some regions, such as local or global maxima, minima, and/or saddle points in the objective space may be mapped. The mapping may be performed by storing mesh chromosomes corresponding to some of the features (e.g., extrema, saddle points, etc.) in the objective space along with the location of those chromosomes within the objective space (e.g., objective values corresponding to each of the objectives). The mesh chromosome may be used in subsequent re-optimization problems, such as with reformulation. Although in a re-optimization the objectives, decision variables, and or objective/constraint models may change, the mesh chromosomes may still provide information and direction for more quickly and/or with reduced resources converge on a re-optimized solution.
US11676034B2
Example methods disclosed herein to initialize classification vectors of a neural network include ranking a plurality of classes to be represented by the classification vectors based on respective numbers of instances of training data associated with corresponding ones of the classes. Disclosed example methods also include initializing the classification vectors to span a classification space corresponding to the classes. Disclosed example methods further include assigning respective ones of the classes to corresponding ones of the classification vectors based on the ranking of the classes.
US11676033B1
A method for training a machine learning model, e.g., a neural network, using a regularization scheme is disclosed. The method includes generating regularized partial gradients of losses computed using an objective function for training the machine learning model.
US11676025B2
A method for training an automated learning system includes processing training input with a first neural network and processing the output of the first neural network with a second neural network. The input layer of the second neural network corresponding to the output layer of the first neural network. The output layer of the second neural network corresponding to the input layer of the first neural network. An objective function is determined using the output of the second neural network and a predetermined modification magnitude. The objective function is approximated using random Cauchy projections which are propagated through the second neural network.
US11676020B2
A biological sample system that efficiently images and registers codes corresponding to biological samples depicted in an image. The biological sample system can implement a neural network to detect the codes individually, and further translate each code into an item identifier. The item identifiers are correlated with network server accounts and a user interface can depict the biological samples with data indicating their registration state.
US11676018B2
A method of feature extraction from an image can include receiving the image including pixels, generating confidence values corresponding to positions of the pixels in the image by an artificial intelligence (AI) based feature extractor, selecting a first position among the positions of the pixels in the image, a first confidence value among the generated confidence values at the first position being higher than a first threshold, and generating a final set of keypoint-descriptor pairs based on the confidence values corresponding to positions of the pixels in the image. The final set of keypoint-descriptor pairs includes at least two keypoint-descriptor pairs corresponding to the first position among the positions of the pixels in the image.
US11676011B2
Embodiments are disclosed for a method for private transfer learning. The method includes generating a machine learning model comprising a training application programming interface (API) and an inferencing API. The method further includes encrypting the machine learning model using a predetermined encryption mechanism. The method additionally includes copying the encrypted machine learning model to a trusted execution environment. The method also includes executing the machine learning model in the trusted execution environment using the inferencing API.
US11676007B2
Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided repair of physical structures include: generating a two dimensional difference image from a first three dimensional model of at least one actual three dimensional surface of a manufactured object, and a second three dimensional model of at least one source three dimensional surface used as input to a manufacturing process that generated the manufactured object; obtaining from an image-to-image translation based machine learning algorithm, trained using pairs of input images representing deformed and deformed plus surface defected added versions of a nominal three dimensional surface, a translated version of the two dimensional image; generating from the translated version of the two dimensional image a third three dimensional model of at least one morphed three dimensional surface corresponding to the at least one source three dimensional surface. Further, defects can be removed based on the third three dimensional model.
US11676005B2
Methods and systems for deep neural networks using dynamically selected feature-relevant points from a point cloud are described. A plurality of multidimensional feature vectors arranged in a point-feature matrix are received. Each row of the point-feature matrix corresponds to a respective one of the multidimensional feature vectors, and each column of the point-feature matrix corresponds to a respective feature. Each multidimensional feature vector represents a respective unordered point from a point cloud and each multidimensional feature vector includes a respective plurality of feature-correlated values, each feature-correlated value represents a correlation extent of the respective feature. A reduced-max matrix having a selected plurality of feature-relevant vectors is generated. The feature-relevant vectors are selected by, for each respective feature, identifying a respective multidimensional feature vector in the point-feature matrix having a maximum feature-correlated value associated with the respective feature. The reduced-max matrix is output to at least one neural network layer.
US11676004B2
An example a method of optimizing a neural network having a plurality of layers includes: obtaining an architecture constraint for circuitry of an inference platform that implements the neural network; training the neural network on a training platform to generate network parameters and feature maps for the plurality of layers; and constraining the network parameters, the feature maps, or both based on the architecture constraint.
US11676000B2
The subject disclosure provides for a mechanism implemented with neural networks through machine learning to predict wear and relative performance metrics for performing repairs on drill bits in a next repair cycle, which can improve decision making by drill bit repair model engines, drill bit design, and help reduce the cost of drill bit repairs. The machine learning mechanism includes obtaining drill bit data from different data sources and integrating the drill bit data from each of the data sources into an integrated dataset. The integrated dataset is pre-processed to filter out outliers. The filtered dataset is applied to a neural network to build a machine learning based model and extract features that indicate significant parameters affecting wear. A repair type prediction is determined with the applied machine learning based model and is provided as a signal for facilitating a drill bit operation on a cutter of the drill bit.
US11675997B2
Provided are a method and apparatus for processing a convolution operation in a neural network. The apparatus may include a memory, and a processor configured to read, from the memory, one of divided blocks of input data stored in a memory; generate an output block by performing the convolution operation on the one of the divided blocks with a kernel; generate a feature map by using the output block, and write the feature map to the memory.
US11675994B2
Disclosed are pre-cure RFID-enabled bead labels based on an RFID inlay construction consisting of an aluminum antenna etched on to a high temperature resistant polyimide film that is connected to an integrated memory circuit positioned on the surface of the polyimide film. This RFID inlay being further inserted into an overall label construction having a plurality of layers that include, for example, a plurality of polyester layers and a plurality of high temperature resistant adhesive layers that bond/adhere layers together, the plurality of layers further protecting and insulating the RFID inlay while the label is bonded to the external bead (or sidewall) of a tire. The compositions/devices disclosed herein can be used for electronic identification when applied on rubber-based articles (e.g., tires) prior to being subjected to stress related to the vulcanization process and normal use of this article during the manufacturing process.
US11675992B2
A component 10 for use in an alarm system includes a component controller 12 and an offline configuration module 14. The offline configuration module 14 includes a passive RFID tag and is configured to receive and store an indication of at least one configuration parameter wirelessly transmitted to the configuration module. Upon initialisation of the component 10, the component controller 12 operates the component 10 in accordance with one or more protocol determined by the at least one configuration parameter indicated by the indication stored by the offline configuration module 14.
US11675989B2
Systems and methods for custom functional patterns for optical barcodes are provided. In example embodiments, image data of an image is received from a user device. A candidate shape feature of the image is extracted from the image data. A determination is made that the shape feature satisfies a shape feature rule. In response to the candidate shape feature satisfying the shape feature rule, a custom graphic in the image is identified by comparing the candidate shape feature with a reference shape feature of the custom graphic. In response to identifying the custom graphic, data encoded in a portion of the image is decoded.
US11675987B2
A scanning apparatus and associated charging system are provided that include a universal power interface configured to receive a removable power source connected thereto where the removable power source includes a power storage unit and a charging circuit. The scanning apparatus further includes scanning circuitry that is in electrical communication with the universal power interface and is configured to scan a target. The scanning apparatus further includes a processor communicably coupled with the scanning circuitry and the universal power interface. In an instance in which the universal power interface receives the removable power source, the processor is configured to determine a type of the removable power source, select one or more parameters based on the determined type of the removable power source, and operate at least one of the scanning apparatus or the charging circuit in the removable power source based on the one or more selected parameters.
US11675984B2
A card insertion unit is provided, which prevents the mixture of lights in different colors even with light sources to emit lights in different colors at the periphery of a card insertion slot. A card insertion unit, having a card insertion slot through which a card is inserted, includes: a plurality of light sources provided to surround the card insertion slot, when viewed in an insertion direction of the card, with a light emitting unit facing in a direction opposite to the insertion direction so as to each emit lights in multiple colors; a translucent cover member that is provided with the card insertion slot and is overlapped with the light sources in the direction opposite to the insertion direction; and a reflective member provided between the light sources and the card insertion slot to reflect light that is to travel from the light sources toward the card insertion slot.
US11675979B2
A computer-implemented interaction control method includes determining, based on a first requirement, a first category from one or more categories estimated from each of a plurality of pieces of information input by a user, selecting, based on the determined first category, a first conversation topic for interaction with the user from conversation topics, executing, by using the first conversation topic, the interaction with the user via a user interface, determining, when detecting that the first conversation topic is inappropriate in accordance with a result of the interaction executed by using the first conversation topic, based on a second requirement, a second category from the one or more categories, selecting, based on the determined second category, a second conversation topic for the interaction with the user from the conversation topics, executing, by using the second conversation topic, the interaction with the user via the user interface.
US11675977B2
Systems, methods, and apparatuses are presented for a novel natural language tokenizer and tagger. In some embodiments, a method for tokenizing text for natural language processing comprises: generating from a pool of documents, a set of statistical models comprising one or more entries each indicating a likelihood of appearance of a character/letter sequence in the pool of documents; receiving a set of rules comprising rules that identify character/letter sequences as valid tokens; transforming one or more entries in the statistical models into new rules that are added to the set of rules when the entries indicate a high likelihood; receiving a document to be processed; dividing the document to be processed into tokens based on the set of statistical models and the set of rules, wherein the statistical models are applied where the rules fail to unambiguously tokenize the document; and outputting the divided tokens for natural language processing.
US11675976B2
Embodiments of the present systems and methods may provide techniques to distinguish between data categories. For example, a method implemented in a computer system may comprise obtaining, at the computer system, a plurality of data strings in different categories, each category having a same string pattern, determining a loose string format and a set of restrictions based on at least one string pattern, classifying the plurality of data strings to respective different categories based on a loose string format of the data strings and on the restrictions on the data strings of the different categories using a classification score indicating utilizing restriction information of other categories when determining the matching of a category, and decreasing the classification score if a mean restriction matching proportion is not part of a category or is a threshold amount above an expected mean restriction matching proportion.
US11675975B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining a textual term; determining, by one or more computers, a vector representing a phonetic feature of the textual term; comparing the vector representing the phonetic feature of the textual term with a reference vector representing a phonetic feature of a reference textual term; and classifying the textual term based on the comparing the vector with the reference vector.
US11675974B2
Methods and systems for a browser extension application are disclosed. In some embodiments, a browser extension application is configured to receive from a browser extension server a regular expression configured to detect a plurality of fields in a web page and execute the regular expression to detect a transaction field in the web page and automatically populate the transaction field with stored data. The application is further configured to detect an unrecognized field in the web page, provide suggested transaction data, and detecting manual population of the unrecognized field with the suggested transaction data. The application is further configured to providing to the browser extension server an indication of the unrecognized field and receive from the browser extension server an updated regular expression configured to detect the unrecognized field in the web page.
US11675963B2
The present disclosure describes design-time tools that assist a document designer in designing a document that is ready for translation into multiple target languages. In particular, techniques are described that enable a user or designer of a document to, at design time itself, check and verify that text elements included in the document for displaying text content are properly sized for displaying translations of the text content in one or more desired target languages. If a text element is not large enough to contain all the desired translations within its boundaries, i.e., there is at least one translation of the text content that cannot be fully contained within the boundaries of the text element, an indication is provided to the user or designer.
US11675951B2
Method and system for assisting electronic chip design, comprising: receiving netlist data for a proposed electronic chip design, the netlist data including a list of circuit elements and a list of interconnections between the circuit elements; converting the netlist data to a graph that represents at least some of the circuit elements as nodes and represents the interconnections between the circuit elements as edges; extracting network embeddings for the nodes based on a graph topology represented by the edges; extracting degree features for the nodes based on the graph topology; and computing, using a graph neural network, a congestion prediction for the circuit elements that are represented as nodes based on the extracted network embeddings and the extracted degree features.
US11675946B1
Programmable network switches configured to perform various functions including session management, data processing, routing, and pipeline processing functions. Exemplary programmable network switches include pipeline processing components to transport data packets to network nodes, and data processing components to perform management functions including instructing the pipeline processing component how to transport the data packets. Auxiliary processing components can also be included to perform pre and post processing. The pipeline processing and auxiliary processing components can include ASICs, FPGAs, and other processors in any combination within a single rack mountable unit.
US11675942B2
A tool is disclosed that includes a discriminant module. The discriminant module finds one configuration, which is selected from many different possible and legal configurations, that is optimal. The optimal configuration is translated into a set of optimized parameters (identified from the library of parameters that the user can select from) and provided to the designer. The designer reviews (and can manually revise or change) the optimized parameters. The optimized parameters are translated into engineering parameters. The engineering parameters are passed, as an input, to the RTL generation module. The RTL generation module produces the RTL description of the hardware function that is optimal and meets the designer's defined requirements.
US11675938B2
A system, method and a computing architecture, for well path planning that can be used in directional drilling and provides for optimal path planning in directional drilling operations. One method includes receiving information about the planned drilling path, target-zone location and planned path changes, and real-time drill-bit location measurements. The method estimates the current state of the geometric location of the drill-bit in the earth during directional drilling operations, and the characteristics of the bottom-hole assembly before and after receiving drill bit location measurements. Such a method preferably determines a time optimal path, such as a Dubins path between the current state of the drill-bit location and the user-provided target-zone.
US11675933B2
An information handling system includes a memory to cache a manifest that has authorized programming interfaces of a client application after the manifest was retrieved from the client application. A native service may receive a connection request from the client application, and verify that a digital signature of the client application is valid and untampered. The native service may also retrieve the manifest from the client application, receive an application programming interface request from the client application, and validate whether the application programming interface request is authorized based on the manifest. If the application programming interface request is authorized, then the application programming interface request is processed.
US11675925B2
A securitization, exposure, portioning, and exchange platform for enabling the securitization or fixing of quantitative values of asset data parcels, which correspond to external assets, and the exchange of asset data parcels between account systems operating via computers over a network. The security of asset data parcels, which corresponds to their quantitative integrity, is controlled by removing their exposure to changes in their corresponding external assets.
US11675923B2
In an example embodiment, a hardware mechanism for protecting user-level software from privileged system software is leveraged to protect in-memory databases in container implementations in a cloud. This hardware mechanism takes the form of an enclave. An enclave is a portion of a CPU that shields application code and data from accesses by other software, including higher-privileged software. Memory pages belonging to an enclave reside in the enclave page cache (EPC), which cannot be accessed by code outside of the enclave. This helps ensure that (1) applications built on top of in-memory database are securely trusted, (2) and a trusted path architecture is provided for enclaves allowing in-memory databases to run securely on top of untrusted cloud platform.
US11675908B2
A method for deploying an information handling system (platform) determines whether a hardware key coupled to the platform constitutes a deployment key by validating a GUID of the key against a deployment key signature, generated by a trusted server and stored on the key. If the key is validated, a trust factor evaluation is performed by validating the deployment key against a second key, which is bound to a nonvolatile storage component containing a second key signature, generated by the trusted server based on a GUID of the nonvolatile storage component. Upon validating the trust factor, the platform boots into an unattended deployment mode loaded from the deployment key and validates an unattended deployment binary stored in the deployment key against the second key signature to establish a trusted execution session for loading unattended deployment modules from the deployment key and deploying the platform by executing the unattended deployment modules.
US11675895B2
A starting instruction directed at a target application (APP) is detected. The starting instruction is adapted to starting the target APP. APP information of the target APP is sent to a server according to the starting instruction. A transmission risk detection result returned by the server according to the APP information is received. The transmission risk detection result indicates whether an operation that transmits data out of a secure region is performed while the target APP is running. The transmission risk detection result is displayed.
US11675893B2
There is a verification application arranged to interact with other applications on an electronic device, the electronic device having a processor, a memory and an operating system controlling operation of the verification application and the other applications on the processor using arbitrary memory locations, where the other applications are enabled to call the verification application to securely determine authenticity of a user of the electronic device. The verification application is arranged to receive verification data for secure determination of authenticity of the user; and provide, upon a call from any of the other applications and a match between the verification data and a verification reference, a trust token to the calling application. A method, electronic device and computer program are also disclosed.
US11675887B2
A writing apparatus that writes stored information into a chip which has been embedded in an individual being a living body, a reading apparatus that reads the stored information which is stored in the chip, and a management server. The stored information includes at least chip identification information that enables the chip to be distinguished from other chips, and movement history information that includes a movement history of the individual. The movement history is generated on a basis of a zip code and a date and a time of arrival at a predetermined region corresponding to the zip code. The chip identification information and the movement history information are stored in association with each other in the management server.
US11675885B2
In a system and method for audio analysis in a cloud-based computerized an authentication (RTA) manager micro-service may send an audio packet to a voice processor micro-service. The voice processor may extract features of the audio. The RTA manager may obtain the extracted features from the voice processor; calculate, based on the extracted features, a quality grade of the audio packet, and send the extracted features to an at least one voice biometrics engine if the quality grade is above a threshold. Each of the at least one voice biometrics engines may be configured to generate a voiceprint of the audio packet, based on the extracted features of the audio packet and to perform at least one of: authenticate a speaker, detect fraudsters, and enrich a previously stored voiceprint of the speaker with the voiceprint of the audio packet.
US11675884B2
A method and system for authenticating a user based on a human-recognizable visual representation of biometric data of the user is captured using the digital camera, wherein a biometric feature descriptor is generated from the captured biometric data of the user, and the feature descriptor, together with a user selected user profile, is transmitted to an inspection server adapted for validating whether the transmitted biometric feature descriptor corresponds to a centrally stored biometric feature descriptor of biometric data of the user. If this is the case, the inspection server transmits an “authentication approved” signal together with user personalization data specified in the selected user profile to the inspection terminal.
US11675879B2
A detection and response system includes a central server having at least one continuously trained neural network and at least one remote system connected to the central server. The at least one remote system includes a first sensor configured to provide an analyzable output corresponding to sensed information to an instanced copy of the continuously trained neural network, and a response system configured to generate a response to the instanced copy of the continuously trained neural network providing a positive detection. A training module is stored on the central server and is configured to update one of the continuously trained neural network and the instanced copy of the continuously trained neural network in response to receiving a data set including the positive detection.
US11675874B2
Systems for automatically suggesting content items to an author of a digital page so that they can be added to the page. One embodiment comprises a system having a page editor that launches a component browser to enable viewing of content items stored in a repository. A web content management server extracts textual information from a digital page that is open for editing and analyzes the information to identify words indicative of the page's subject matter. The system generates a query using the identified words and a search engine searches the repository for items associated with the identified words. The content items identified by the search are displayed by the component browser and are selectable to add particular suggested content items to the page.
US11675865B2
A system for analyzing screenshots can include a computing device including a processor coupled to a memory and a display screen configured to display content. The system can include an application stored on the memory and executable by the processor. The application can include a screenshot receiver configured to access, from storage to which a screenshot of the content displayed on the display screen captured using a screenshot function of the computing device is stored, the screenshot including an image and a predetermined marker. The application can include a marker detector configured to detect the predetermined marker included in the screenshot. The application can include a link identifier configured to identify, using the predetermined marker, a link to a resource mapped to the image included in the screenshot, the resource accessible by the computing device via the link.
US11675861B2
Personalized sensory services are provided to mobile devices. As a sensor monitors an area of surveillance, the sensor may detect a passing mobile device. The sensor may thus ally itself to the passing mobile device and provide personalized sensory operations.
US11675860B1
Systems and methods to generate creator page recommendations for content creators within a membership platform based on classification of content creators are described herein. Exemplary implementations may: obtain new creator information; obtain existing creator information; classify individual existing content creators into modality classes and/or genre classes based on the existing creator information; classify individual new content creators into the modality classes and/or the genre classes based on the new creator information; generate relationship information establishing relationships between the new content creators and the existing content creators; generate one or more creator page recommendations based on the relationship information; effectuate presentation of the one or more creator page recommendations; and/or perform other operations.
US11675859B2
A data processing system for searching network requests to extract values of parameters in the network requests includes a shared memory that stores data structures, wherein each of the data structures is stored in association with a value of a key, and wherein each of the data structures includes one or more entries for storage of data representing a network request. A parser engine parses a particular network request for values of parameters and for a value of a key. A search engine queries the shared memory for a particular data structure stored in association with the value of the key. A logic engine detects an absence of a particular entry, in the particular data structure, that stores data representing the particular network request, generates an entry in the particular data structure, and stores in the generated entry the values of the parameters.
US11675856B2
Content for products can be identified. For each identified content, at least one class to which the first content pertains can be predicted using an artificial intelligence multiclass model. For each identified first content that corresponds to the at least one class, a support level of the product with regard to at least one class can be predicted using artificial intelligence binary class models. For each identified product, data indicating the product and the support level of the product with regard to the at least one class can be added to a data table. A product features map based on the data indicating the products and a support level of each product with regard to the at least one class can be generated and output.
US11675849B2
The methods and systems described herein reorder feed items. In one example, the methods and systems store in a memory feed items in a defined sequential order for display in a feed. The methods and systems monitoring a speed of scrolling the feed items (scroll speed) on a user device. The methods and systems also determine that the scroll speed is equal or greater than a scroll threshold and in response to the determination reorder one or more of the feed items in a new order for display in the feed. The methods and systems also generate for display the one or more feed items in the feed in the new order.
US11675848B2
A search request may define a minimum value and a maximum value for a numerical parameter of the search. A plurality of binary searches may identify a minimum entry and a maximum entry, each binary search comprising selecting a single entry and using at least one analytical model to generate a score for the single entry, wherein the score of the minimum entry corresponds with the minimum value and the score of the maximum entry corresponds with the maximum value. The at least one analytical model may be used to generate a score for each of a set of entries between the minimum entry and the maximum entry while ignoring entries outside of the set of entries between the minimum entry and the maximum entry. Entries responsive to the request may be identified within the scored set of entries.
US11675836B2
In embodiments, the present invention provides a method and system for managing playback of content delivered to a mobile device with a pause and resume functionality. The method and system including receiving delivered content on a mobile device, initiating playback of the delivered content, pausing playback of the content being delivered to the mobile device in response to an action and resuming delivery of the content upon a request.
US11675824B2
The present teaching relates to entity extraction and disambiguation. In one example, an entity name extracted from a data source associated with a user is obtained. One or more entity types associated with the entity name are determined. One or more entity candidates are identified with respect to each of the one or more entity types. An entity candidate is selected with respect to one of the one or more entity types to be an individual associated with the entity name.
US11675810B2
A method for performing disaster recovery in a clustered environment comprises identifying, at a master device, a first indexer from a set of indexers to serve as a primary indexer for responding to queries pertaining to a subset of data. The method also comprises assigning, at the master device, a generation identifier indicating that the first indexer is the primary indexer for the subset of data. Responsive to an event prompting a change in a primary indexer designation for the subset of data, the method comprises identifying, at the master device, a second indexer from the set of indexers to serve as the primary indexer for responding to queries pertaining to the subset of data. Further, the method comprises assigning, at the master device, a new generation identifier indicating that the second indexer is the primary indexer for the subset of data.
US11675801B2
A method generates data visualizations. A computing device retrieves a set of tuples from a database according to user selection. Each tuple has the same set of fields. The device identifies a relation between tuples. The relation is a non-empty set of ordered pairs of tuples from the set of tuples. A user selects a base tuple from the set of tuples and the device forms a filtered subset of tuples consisting of the selected base tuple and those tuples that are connected to the selected base tuple by a sequence of tuples that are related by the relation. The user selects an aggregation level, which consisting of fields from the set of fields. The device generates and displays a data visualization by aggregating the filtered subset of tuples at the selected aggregation level to form a set of aggregated tuples, and displaying each aggregated tuple as a visible mark.
US11675793B2
The inventions and its embodiments (hereafter called “the System”) are intended for use by any user in any situation where the amount of data is too extensive to effectively make sense of it in traditional manners or by use of traditional technology. Source data may be provided by one or many network computers and their inherent applications and/or data repositories. Information is made available to the users in intuitive contexts without moving, copying or manipulating the source data. Raw source data is extracted, analyzed, improved and normalized through a curating process for use by the System. All metadata are connected through a multidimensional, non-linear relational network, the fixed layer, based on a persistent relational network that includes any existing or emerging contextual information in the form of structured metadata.
US11675788B2
A query is received at a database execution engine. A query plan is generated by the database execution engine and for execution of the query. The query plan includes a first operator including computer executable instructions that upon execution queries a data structure of a database, determines whether the data structure satisfies a precondition for execution of a second operator of the query plan, and generates a signal indicating that the precondition is not satisfied. Execution of the query plan is initiated. A new query plan is generated by the database execution engine and in response to receiving the signal indicating that the precondition is not satisfied. Related systems, methods, and articles of manufacture are also described.
US11675785B2
Techniques are described for enabling in-memory execution of any-sized graph data query by utilizing both depth first search (DFS) principles and breadth first search (BFS) principles to control the amount of memory used during query execution. Specifically, threads implementing a graph DBMS switch between a BFS mode of data traversal and a DFS mode of data traversal. For example, when a thread detects that there are less than a configurable threshold number of intermediate results in memory, the thread enters BFS-based traversal techniques to increase the number of intermediate results in memory. When the thread detects that there are at least the configurable threshold number of intermediate results in memory, the thread enters DFS mode to produce final results, which generally works to move the intermediate results that are currently available in memory to final query results, thereby reducing the number of intermediate results in memory.
US11675770B1
A database management system stores data for a table as a journal of transaction. The records of the journal comprise information indicative of changes applied to a document of the table. The database receives a query on a table of transactions performed on the table. In response to the query on the table of transactions, the database generates results by retrieving and projecting the records of the journal in accordance with the query. The results of the query are indicative of changes applied to the document of the table.
US11675768B2
Compression of data that permits direct reconstruction of arbitrary portions of the uncompressed data. Also, the direct reconstruction of arbitrary portions of the uncompressed data. Conventional compression is done such that decompression has to begin either at the very beginning of the data, or at particular intervals (e.g., at block boundaries—every 64 kilobytes) within the data. However, the principles described herein permit decompression to begin at any point within the compressed data, without having to decompress any prior portion of the file. Thus, the principles described herein permit random access of the compressed data. In accordance with the principles described herein, this is accomplished by using an index that correlates positions within the uncompressed data with positions within the compressed data.
US11675767B1
A system includes a plurality of computing units. A first computing unit of the plurality of computing units comprises: a communication interface configured to receive an indication to roll up data in a data table; and a processor coupled to the communication interface and configured to: build a preaggregation hash table based at least in part on a set of columns and the data table by aggregating input rows of the data table; for each preaggregated hash table entry of the preaggregated hash table: provide the preaggregated hash table entry to a second computing unit of the plurality of computing units based at least in part on a distribution hash value; receive a set of received entries from computing units of the plurality of computing units; and build an aggregation hash table based at least in part on the set of received entries by aggregating the set of received entries.
US11675766B1
A hierarchical representation of an input data set comprising similarity scores for respective entity pairs is generated iteratively. In a particular iteration, clusters are obtained from a subset of the iteration's input entity pairs which satisfy a similarity criterion, and then spanning trees are generated for at least some of the clusters. An indication of at least a representative pair of one or more of the clusters is added to the hierarchical representation in the iteration. The hierarchical representation is used to respond to clustering requests.
US11675762B2
A method for deleting a set of keys from a storage server is provided. The method includes generating a probabilistic data structure for a first set of keys and for each key in a second set of keys, determining whether a key of the second set of keys is found in the probabilistic data structure. The method includes identifying the key as a candidate for deletion if the key is not found in the probabilistic data structure. A system is also provided.
US11675758B2
In accordance with embodiments, there are provided mechanisms and methods for facilitating early detection and warning for system bottlenecks in an on-demand services environment according to one embodiment. In one embodiment and by way of example, a method includes detecting waits during processing of a query within a processing pipeline, wherein the waits include one or more of application-specific waits and database-specific waits; diagnosing the waits to identify a wait that has turned into a bottleneck; classifying one or more types of issues causing the wait to turn into the bottleneck; generating an alert having associated information detailing the issues based on the one or more types and a location of the wait within the processing pipeline; and transmitting the alert to facilitate correction activities.
US11675739B1
Files are striped across multiple disparate data repositories. Metadata is stored hierarchically in a tree data structure to allow retrieval and reassembly of the files from the multiple repositories. The metadata is at least partially encrypted. The hierarchical tree data structure may be traversed without decrypting file identifying information. In this way, a file storage coordinator may quickly traverse the metadata without compromising the security of the striped files. Identification and retrieval of files associated with the metadata requires access to a decryption key, generally unavailable to the file storage coordinator. The metadata may be striped across the repositories in much the same way as the files are striped.
US11675737B2
One example method includes monitoring performance of an element of a runtime environment, where the monitoring includes collecting performance information concerning the element, analyzing the collected information, detecting, based on the analysis of the collected information, an anomaly in the performance of the element and, in response to detection of the anomaly, automatically marking a snapshot of the runtime environment element, and the marking of the snapshot overrides a retention policy applicable to the snapshot.
US11675736B2
Techniques are provided for auditing individual object operations as multiple file system operations. In an example, a client computer sends an object storage operation to a server that is configured to store data in a file system. The server receives the object storage operation, and converts it to one or more corresponding file system operations. The server opens an audit file context that identifies the object storage operation. As a file system driver reports that it has completed various file system operations corresponding to the object storage operation, the server appends an identification of the object storage operation, as determined from the audit file context, to an audit log entry for that file system operation.
US11675720B2
An embodiment circuit comprises a plurality of processing units, a plurality of data memory banks configured to store data, and a plurality of coefficient memory banks configured to store twiddle factors for fast Fourier transform processing. The processing units are configured to fetch, at each of the FFT computation stages, input data from the data memory banks with a burst read memory transaction, fetch, at each of the FFT computation cycles, different twiddle factors in a respective set of the twiddle factors from different coefficient memory banks of the coefficient memory banks, process the input data and the set of twiddle factors to generate output data, and store, at each of the FFT computation stages, the output data into the data memory banks with a burst write memory transaction.
US11675707B2
A memory system and method for storing data in one or more storage chips includes: one or more memory cards each having a plurality of storage chips, and each chip having a plurality of dies having a plurality of memory cells; a memory controller comprising a translation module, the translation module further comprising: a logical to virtual translation table (LVT) having a plurality of entries, each entry in the LVT configured to map a logical address to a virtual block address (VBA), where the VBA corresponds to a group of the memory cells on the one or more memory cards, wherein each entry in the LVT further includes a write wear level count to track the number of writing operations to the VBA, and a read wear level count to track the number of read operations for the VBA mapped to that LVT entry.
US11675704B2
In a ray tracer, a cache for streaming workloads groups ray requests for coherent successive bounding volume hierarchy traversal operations by sending common data down an attached data path to all ray requests in the group at the same time or about the same time. Grouping the requests provides good performance with a smaller number of cache lines.
US11675695B2
Methods, systems, and devices for clock domain crossing queue are described. A memory sub-system can generate a namespace map having a set of namespace blocks associated with a memory sub-system. The namespace blocks can include one or more logical block addresses associated with the memory sub-system. One namespace block of the set of namespace blocks can include an indication that can indicate that the namespace block and each namespace block following the namespace block are available for mapping. The memory sub-system can receive a request to create a namespace and sequentially map one or more available namespace blocks to the namespace according to the ordering of the namespace map, including the namespace block with the indication.
US11675683B2
The present disclosure relates to a method, an electronic device, and a computer program product for monitoring a storage system. For example, a method of monitoring a storage system is provided. This method may include setting a quota type of a folder to be monitored in the storage system to a monitored type. This method may further include acquiring quota monitoring data of which the quota type is the monitored type from a quota monitoring report associated with the storage system. In addition, this method may further include generating storage information of the folder based on the quota monitoring data. In this way, the time spent on monitoring the storage system can be shortened, the system resources can be saved, and ultimately, the user experience can be improved.
US11675682B2
In one embodiment, a software agent profiler process attaches to an application and a primary instrumentation interface for the application, and discovers one or more software agents associated with the application. The software agent profiler process may then launch the one or more software agents within an encapsulated container environment of the software agent profiler process by configuring each of the one or more software agents, respectively, to point to a proxy instrumentation interface of the software agent profiler process instead of the primary instrumentation interface for the application. As such, the software agent profiler process may receive calls from the one or more software agents on the proxy instrumentation interface of the software agent profiler process, and can manage the calls from the one or more application agents prior to the calls being passed to the primary instrumentation interface for the application.
US11675678B1
A system detects failed service tier in cluster of servers, which are controlled by master node to execute applications and store data, in service tiers, which correspond to sets of server performance characteristics, in storage domains, which correspond to server racks, in cluster. The system identifies, by accessing database, applications installed on servers in failed service tier and any affinities that identified applications have for any type of server, any service tier, and/or any storage domain. The system updates, based on current configuration of cluster, identified affinities for identified applications. The system enables, by providing updated affinities for identified applications in database, master node to identify replacement servers, for identified applications, corresponding to set of server performance characteristics and server rack, and install identified applications in replacement servers, thereby enabling replacement servers to substitute for failed service tier and store data.
US11675675B1
Configuration and replication can be managed across multiple sites for datacenter volumes. A visual representation of a current configuration for a first of a plurality of replication techniques can be conveyed for display on a display device. Changes can be made to the current configuration, producing a future configuration. The future configuration can be analyzed for replication errors, and an updated visual representation can be produced that identified discovered replication errors and highlights differences between the current configuration and the future configuration. The updated visual representation can be conveyed, for display on a display device.
US11675672B2
In the face of ransomware attacks, which can be increasingly difficult to effectively prevent, a solution can be considered to be the minimization of the cost and time taken to recover data and, hence business activities. Embodiments perform a restore operation that include automatically identifying the most recent healthy backup, from which data should be restored, and the prioritizing of the order in which data should be restored.
US11675670B2
Methods and systems for recovering a host image of a client machine to a recovery machine comprise comparing a profile of a client machine of a first type to be recovered to a profile of a recovery machine of a second type different from the first type, to which the client machine is to be recovered, by a first processing device. The first and second profiles each comprise at least one property of the first type of client machine and the second type of recovery machine, respectively. At least one property of a host image of the client machine is conformed to at least one corresponding property of the recovery machine. The conformed host image is provided to the recovery machine, via a network. The recovery machine is configured with at least one conformed property of the host image by a second processing device of the recovery machine.
US11675669B2
Generating any point in time backups without native snapshot generation. Production data is split such that a journal stream is sent to a data protection system, which may be local or remote. The journal stream includes a data stream and a metadata stream. Backups are synthesized at the data protection system by rolling at least a portion of the journal. A backup for any point in time represented in the journal can be synthesized.
US11675663B1
Recovering or restarting an execution instance. In response to detecting that a particular execution instance, in which a cable modem termination system (CMTS) software application, an optical line terminal (OLT) software application, and/or broadband network gateway (BNG) software application has failed, restarting the execution instance without adding any downstream service flow classifiers to the instance or configuring any entries of an access control list for the instance. After restarting the execution instance, over time adjusting the configuration of the instance to add one or more downstream service flow classifiers or access control list entries such that the instance can provide additional services, beyond a default service flow, to cable modems or optical network units. Support for voice calls may be initially added to the execution instance upon startup. Required time to register cable modems or optical network units with the execution instance is advantageously reduced while maintaining quality of service.
US11675660B2
An apparatus includes a central processing unit (CPU) core and a cache subsystem coupled to the CPU core. The cache subsystem includes a first memory, a second memory, and a controller coupled to the first and second memories. The controller is configured to execute a sequence of scrubbing transactions on the first memory and execute a functional transaction on the second memory. One of the scrubbing transactions and the functional transaction are executed concurrently.
US11675657B2
A memory system employs an addressing scheme to logically divide rows of memory cells into separate contiguous regions, one for data storage and another for error detection and correction (EDC) codes corresponding to that data. Data and corresponding EDC codes are stored in the same row of the same bank. Accessing data and corresponding EDC code in the same row of the same bank advantageously saves power and avoids bank conflicts. The addressing scheme partitions the memory without requiring the requesting processor to have an understanding of the memory partition.
US11675646B2
Techniques for anomaly detection are described. An exemplary method includes receiving a request to monitor for anomalies from one or more data sources; analyzing time-series data from the one or more data sources; generating a recommendation for handling the determined anomaly, the recommendation generated by performing one or more of a root cause analysis, a heuristic analysis, and an incident similarity analysis; and reporting the anomaly and recommendation.
US11675645B2
An information handling system includes a processor and a basic input/output system (BIOS). The processor executes an operating system, and detects a corrected error from a memory controller of the information handling system. In response, the processor generates a system management interrupt (SMI). In response to the SMI the BIOS executes a SMI handler. The SMI handler detects a row of the corrected error within a dual inline memory module (DIMM) of the information handling system, and determines whether an entry for the row is located within a hash table. In response to the entry for the row being located within the hash table, the SMI handler increments an error count in a field of the entry for the row. Otherwise, the SMI handler adds a new entry for the row to the hash table, and increments an error count in a field of the new entry for the row.
US11675643B2
The invention relates to a device and a method (100) for determining a technical incident risk value in an infrastructure (5), said method comprising:
a step of receiving (120) performance indicator values,
a step of identifying (140) anomalous performance indicators, so as to identify abnormal values, and identifying performance indicators associated with these abnormal values,
a step of determining (150) at-risk indicators, comprising an identification of performance indicators of the computing infrastructure that are correlated with the identified anomalous indicators,
a step of creating (160) an augmented anomalies vector, comprising the identifiers of the identified anomalous indicators and the identifiers of the determined at-risk indicators,
a determination step (170), comprising the comparison of the augmented anomalies vector with predetermined technical incident reference data.
US11675636B2
Various methods, apparatuses/systems, and media for automatic generation and management of cloud service provider events are provided. A service provider computing device defines a maturity level of an event; publishes an event schema associated with the maturity level of the event; and transmits the event to an event platform that is configured to provide infrastructure for event production and consumption. The event platform validates the event based on the event schema; calculates a validation score for the event upon validation of the event; and publishes the validation score on a website. A consumer computing device consumes the published event from the event platform.
US11675633B2
A system comprising a gateway for interfacing external data sources with one or more accelerators. The gateway comprises a plurality of virtual gateways, each of which is configured to stream data from the external data sources to one or more associated accelerators. The plurality of virtual gateways are each configured to stream data from external data sources so that the data is received at an associated accelerator in response to a synchronisation point being obtained by a synchronisation zone. Each of the virtual gateways is assigned a virtual ID so that when data is received at the gateway, data can be delivered to the appropriate gateway.
US11675628B2
Provided are a method for operating a storage driver in a container environment and a storage driver apparatus and a method for operating a storage driver according to an exemplary embodiment of the present disclosure includes: requesting downloading of an image for running a container; downloading a plurality of sub images associated with the requested image; allocating each of the plurality of downloaded sub images to an independent logical volume in a multi-layer based file system; and running a container using each of the plurality of allocated sub images.
US11675622B2
A processing device receives request from a process of a plurality of processes of a clusterized service, to attempt to create, in a file system accessible by the process, a file associated with a leader state of the plurality of processes. Responsive to successfully creating the file, the processing device to enable the process to enter the leader state. The processing device is further to enable the process to stay in the leader state for a lifetime of the process.
US11675613B2
Techniques and mechanisms provide a flexible mapping for physical functions and virtual functions in an environment including virtual machines.
US11675612B2
One example method includes intercepting an IO issued by an application of a VM, the IO including IO data and IO metadata, storing the IO data in an IO buffer, writing the IO metadata and a pointer, but not the IO data, to a splitter journal in memory, wherein the pointer points to the IO data in the IO buffer, forwarding the IO to storage, and asynchronous with operations occurring along an IO path between the application and storage, evacuating the splitter journal by sending the IO data and the IO metadata from the splitter journal to a replication site.
US11675610B2
Calls run through a virtual desktop infrastructure server are enhanced by testing communication network conditions and selecting, based on the test results, a media channel from a set of supported media channels, including a media channel that is routed through the virtual desktop infrastructure server and encapsulated in a protocol for exchanging data for virtual desktop applications and a more direct media channel that uses a network socket pair between a media server and a personal computing device and bypasses the virtual desktop infrastructure server. In some implementations, call data of multiple types and/or from multiple sources are merged into a single virtual channel of the protocol for exchanging data for virtual desktop applications.
US11675609B2
A system for organizing, displaying, and interacting with information on a display device includes a computer processor and a memory device. The memory device stores at least one piece of computer code executable by the computers processor and data used by the computer code. A display device is structured to display a graphical interface to a user based on the computer code executed by the computer processor. Input devices are structured to receive information from the user based on one or more images of the graphical interface displayed on the display device. The computer code includes a main display module for providing a main display area of the graphical interface, and for organizing digital objects in a plurality of layers. The layers include a base layer corresponding to a base-surface of the main display area, and a fixed layer corresponding to a fixed-surface of the main display area.
US11675607B2
Systems and methods of transferring data from memory to manage graphical output latency are provided. A device having a display receives an acoustic signal that carries a query. The device determines that a wireless controller is in a first state. The device establishes, based on receipt of the acoustic signal and the determination that the wireless controller device is in the first state, a first interaction mode for a graphical user interface rendered by the computing device for display via the display device. The device sets a prefetch parameter to a first value and prefetches the corresponding amount of electronic content items. The device establishes a second interaction mode and overrides the first value of the prefetch parameter to a second value, and prefetches a second amount of electronic content items corresponding to the second value.
US11675604B2
Programming field programmable gate array (FPGA) digital electronic integrated circuits (ICs) or other ICs that support partial reconfiguration, a particular FPGA having reconfigurable partitions and primitive variations configurable in each of the reconfigurable partitions, comprises: before writing configuration bitstreams to the FPGA, compiling and storing primitive bitstreams for different primitive functions that can be implemented on the particular FPGA; receiving input in a graphical user interface to connect graphical blocks representing functional logic of an algorithm to implement on the particular FPGA, the graphical blocks relating to reconfigurable logic; automatically determining a subset of the primitive functions comprising particular primitive functions that correspond to the graphical blocks; obtaining, from the digital storage, a subset of the primitive bitstreams that corresponds to the subset of the primitive functions; using partial reconfiguration operations, writing the subset of the primitive bitstreams to the particular FPGA.
US11675603B2
A method and apparatus for enabling control of execution of software applications is described. The method may include receiving an identifier for a user system, an identifier of a feature of an application running on the user system, and one or more definition values that define a treatment to be applied to the application feature. The method may also include storing the identifier for the user system, the identifier of the feature of an application running on the user system, and the definition values to be applied to the application feature. Furthermore, the method may include applying the definition values to the application feature at the user system based on the identifier for the user system stored in the memory, wherein the definition values configures the feature within the application while the application is running at the user system.
US11675602B2
Embodiments for managing a computing system are provided. A Root-of-Trust (RoT) device within the computing system is caused to boot. The computing system includes at least one peripheral device, and the RoT device is in operable communication with the at least one peripheral device and a management server. The at least one peripheral device is caused to at least partially boot. The RoT device is caused to retrieve a firmware image associated with the at least one peripheral device from the management server. The at least one peripheral device is caused to reboot utilizing the firmware image.
US11675601B2
Embodiments of systems and computer implemented methods are disclosed to automatically restore operating system (OS) application software to an information handling systems (IHS) when the OS application software is removed from a computer readable storage device of the IHS. The disclosed embodiments control the version of the OS application software being deployed to an IHS when deploying the software from the boot firmware. For example, the disclosed embodiments utilize a version identifier to specify which version of the OS application software should be restored, a Content Deliver Network (CDN) server to store multiple versions of the OS application software, and a registration web server to map a device identifier corresponding to the IHS and the version identifier corresponding to the specified version of the OS application software to a universal resource locator (URL) link identifying where the specified version of the OS application software is stored within the CDN server.
US11675596B2
Various example embodiments for supporting message processing are presented. Various example embodiments for supporting message processing are configured to support message processing by a processor. Various example embodiments for supporting message processing by a processor are configured to support message processing by the processor based on dynamic control over processor instruction sets of the processor.
US11675581B1
Functionality is provided for the automated creation, testing, training, adaptation and deployment of AI models and changes thereto. Base classes are provided that enable practicable creation of new models from existing one. New models are tested on live data sets offline from user sites. New training methods are provided for the production of particular outcomes. Efficient adaptation of new AI models is facilitated, encompassing data scientist and development team control over how fast to train and deploy new models.
US11675576B2
Systems and methods described herein provide an application priority optimization service. Application information associated with an application to be deployed at a Multi-access Edge Computing (MEC) network is received and parameters associated with execution of the application are determined based on the application information. The application is deployed at the MEC network and information associated with performance of the application is obtained. Resources allocated for execution of the application may be adjusted based on the performance of the application to create a modified application and the modified application may be executed at the MEC network.
US11675571B1
The present invention provides a system and method for restructuring of one or more applications. The invention includes a syntax data library having components enabling creation of one or more logical flow blocks by the AI engine. The logical flow blocks are structured on an extension tool interface to restructure the one or more applications for executing one or more SCM operations.
US11675558B1
An image forming apparatus includes an electrophotographic process assembly, a processor, and a memory. The electrophotographic process assembly is configured to transfer a toner image formed on a photoconductive body rotating around an axis extending in a main scanning direction onto a sheet conveyed in a sub-scanning direction orthogonal to the main scanning direction. The processor and memory are configured to store a print amount in a plurality of divided sections corresponding to the main scanning direction, acquire the print amount from a monitoring section in one or more monitoring target groupings corresponding to a predetermined section included in the plurality of divided sections, calculate an integrated print amount in the monitoring section, and output information relating to the monitoring target grouping corresponding to the integrated print amount in the monitoring section.
US11675556B2
An apparatus includes a storage unit and a control unit. The storage unit stores conflict information indicating that a setting for printing a predetermined number of pages on one surface of one sheet conflicts with a setting for punching a plurality of rows of holes in the one sheet. The control unit performs control to prohibit generation of a print command including the printing and punching settings based on the conflict information stored in the storage unit.
US11675554B1
Provided is an industrial printing system that reduces the risk of delays. A status management unit manages the completion status of a part on a page for variable printing. A process control unit creates a job ticket by using a substitute part for an incomplete parts managed by the status control unit, creates the substitute part as link data, and saves a position of a record and a page containing the substitute part as job attribute information. A process management unit performs a prepress process or a printing process by using the job ticket created by the process control unit. A post-processing unit performs post-processing according to the job ticket for the record or the page that has been performed prepress process or printing process by the process management unit.
US11675539B2
A computational device configures a storage system that supports a plurality of submission queues. A file system monitors characteristics of received writes to distribute the writes among the plurality of submission queues. The computational device categorizes the writes into full track writes, medium track writes, and small track writes, measures a frequency of different categories of writes determined based on the categorization of the writes, and generates arbitrations of the writes with varying priorities for distributing the writes for processing in the submission queues. A full track write includes writing incoming data blocks of the writes received to a fresh track, in response to a total size of the incoming data blocks being equal to or more than a size of one full track. A medium track write includes overwriting an existing data track. A small track write includes staging the incoming data blocks to a caching storage.
US11675534B2
A data storage device includes a memory device and a controller coupled to the memory device. The controller is configured to receive a command, such as from a host device, to write data to the memory device, perform toggle mode (TM) encoding on the data, and send the TM encoded data to the memory device. The memory device is configured to receive the TM encoded data, decode the TM encoded data, and write the decoded data to a location within the memory device. The memory device is further configured to receive a read command to read data from a location within the memory device, read the data, TM encode the data, and send the TM encoded data to the controller. The controller is configured to receive and decode the TM encoded data, and send the decoded data to a host device.
US11675530B2
Provided is an operating method of a memory controller which comprises receiving first decision data of M bits from a memory device, where M is a natural number; converting the M-bit first decision data into second decision data of N bits, where N is a natural number less than M; and attempting a first decoding using the second decision data.
US11675525B2
An improved data storage system and apparatus including an improved storage controller that provides storage compute functionality that enables the acceleration of datacenter software, and that enables easier deployment of application software portions onto storage devices, in a manner that supports runtime performance acceleration of network-latency-throttled applications. Mechanisms and methods are provided for server hosted applications to initiate deployment of, initiate execution of, and interoperate with a multitude of softwares on a multitude of storage devices, where these softwares execute proximate to storage contents on the storage devices.
US11675523B2
A primary storage system reads a plurality of journal data, and performs collective compression that is compression of data that is at least a part of the plurality of pieces of journal data in the plurality of journals and is larger than a size of one journal data. The collectively compressed data, which is a plurality of pieces of journal data subjected to collective compression, is a transfer target from the primary storage system to the secondary storage system. The journal is journal data and metadata including a write order of the journal data and associated with the journal data. The journal data is a copy of data written in the primary volume. The secondary storage system acquires a plurality of pieces of journal data by decompressing one or more pieces of collectively compressed data, and writes the plurality of pieces of journal data to the secondary volume.
US11675514B2
A method is used for tracking storage utilization in a storage system. An amount of physical storage space available for use on an appliance is determined. The amount of storage space consumed by each type of data being stored on the appliance is normalized. These normalized amounts are used to determine an amount of storage space on the appliance consumed by the data. When a percentage of storage space consumed on the appliance exceeds a threshold, an alert is generated.
US11675506B2
A storage device includes a plurality of non-volatile memories; a volatile memory; a computing device configured to perform an operation on data provided by the plurality of non-volatile memories; and a storage controller including a resource manager configured to receive information about priority of tenants from a host, and to dynamically set resources of the plurality of non-volatile memories, the volatile memory, and the computing device based on the priority.
US11675498B2
One or more usage parameter values associated with a host system are obtained. The one or more parameter values correspond to one or more operations associated with a memory sub-system. An expected time period during which a set of host data will be received from the host system is determined in view of the one or more usage parameter values. In response to a determination, in view of an indication received from the host system, that the set of host data will not be received at the expected time period, a media management operation is performed at memory units of the memory sub-system.
US11675486B2
A machine may be configured to facilitate partial reductions of an amount by generating and providing a graphical user interface that enables a user to specify one or more partial reductions of the amount, thus defining or otherwise controlling how the amount is to be reduced in stages by such partial reductions. For example, in situations where a total amount is to be reduced in stages by multiple partial reductions, the generated and provided graphical user interface may be operable to specify each stage of reduction by enabling the user to select a corresponding account for each stage of reduction. The corresponding account may be selected from among a set of multiple available accounts, each with a respectively corresponding available amount, any portion or all of which may be available to use in that stage of reducing the total amount.
US11675485B2
Computer-implemented systems and methods are disclosed for providing a graphical user interface for tagging external content. In accordance with some embodiments, a method is provided for tagging content external to a database system. The method comprises accessing the external content of an electronic device. The method may comprise enhancing the web browser by providing a tagging interface for tagging at least a portion of the external content. The method may further comprise receiving created tag associated with a tagged portion of the external document content, and exporting the external content and the received tag to the database system. The tagging interface can also provide an option to export the created tag to an internal database system.
US11675482B2
A display board system for football coaching applications is provided. The system enables football coaching staffs to communicate any convey information to on-field players, such as the personnel types of the opposing team or the specific play call for the ensuing play. The system includes a visual display board, a control device, and a control application. The display board includes one or more rows of illuminating numbers that displays any selected set of one or more numerical digits for viewing by the on-field players. The control device is in electronic communication with the display board via wired or wireless connection and is configured for use by the coaching staff to input the desired information for display on the display board. The control application is a programming application configured to run on the control device to enable operation of the control device to display information on the display board.
US11675481B1
Embodiments of the inventive concept include a multi-platform omni-channel content creation and distribution system. The system includes a multi-platform media content data and logic structure, a user interface logic section configured to interface with a user and the multi-platform media content data and logic structure, and a multi-sectional view configured to be shown on a display. The multi-sectional view includes a metadata section in a first section thereof and a simulated true-to-life preview section in a second section thereof. The user interface logic section receives metadata information from the user. The metadata section displays the metadata information. The multi-platform media content data and logic structure causes the simulated true-to-life preview section to show a piece of content with exact proportional dimensions and appearance as it would appear under actual non-simulated real-world circumstances for a particular media platform and associated physical device.
US11675470B2
Embodiments include a method and system for projected capacitive (PCAP) touchscreen construction with laser ablation. In glass/film/film (GFF) PCAP touchscreens, the films are coated with indium-tin-oxide (ITO), patterned by printing silver ink, and by ablating both the ITO and silver with a laser. A similar process occurs for a glass/glass (2GS) PCAP touchscreen. Embodiments include varying the pattern with which the laser ablates ITO on film within the touch area to improve touchscreen sensitivity. For example, by varying the width of patterns of floating ITO islands such that widths are less than or equal to a plan-view electrode gap between vertical and horizontal electrode pads and larger elsewhere, the touch sensitivity of the PCAP touchscreen may be improved and/or maximum touchscreen size may be increased.
US11675463B2
[Object] To allow a pen to properly receive an uplink signal even if there is dullness in a waveform of the uplink signal. [Solution] Provided is an invention of a method of transmitting transmission data from a sensor controller 31 that detects a pen 2 to a pen through a sensor electrode group 30. The pen 2 includes a pen tip electrode arranged near a pen tip, an analog circuit that detects edges of a signal led to the pen tip electrode, and a digital circuit that performs a correlation operation of an output signal of the analog circuit and known patterns to detect transmission data. The sensor controller 31 generates a pulse signal representing the transmission data and transmits the pulse signal, by using a main signal and a sub signal of the pulse signal so as to enhance the edges, thereby transmitting the transmission data through the sensor electrode group.
US11675461B2
Disclosed are an infrared touch screen bezel for installing a functional assembly and a display terminal including the same. The infrared touch screen bezel (10) includes a frame body (11), a first infrared base panel (12), and a second infrared base panel (13); the first infrared base panel (12) and the second infrared base panel (13) are both arranged in a cavity (101) of the frame body (11), and a functional assembly (30) is arranged in a gap between the first infrared base panel (12) and the second infrared base panel (13); the first infrared base panel (12) and the second infrared base panel (13) are electrically connected through a first flexible circuit board (14). The above-mentioned infrared touch screen bezel (10) may greatly reduce the width of the frame required to install a functional assembly without affecting the infrared touch function.
US11675455B2
An electronic device includes: a sensor layer including a first area and a second area adjacent to the first area; a first driving circuit providing a first driving signal to the sensor layer and receiving first data output from the first area of the sensor layer; and a second driving circuit providing a second driving signal to the sensor layer and receiving second data output from the second area of the sensor layer. The second driving circuit provides intermediate data to the first driving circuit. The intermediate data is obtained based on the second data, and the first driving circuit generates result data based on the first data and the intermediate data.
US11675454B2
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each located at a crossing of a drive line and a sense line. In some embodiments, multiple drive lines may be simultaneously or nearly simultaneously stimulated with drive signals having unique characteristics, such as phase or frequency. A sense signal can occur on each sense line that can be related to the drive signals by an amount of touch present at sense points corresponding to the stimulated drive lines and the sense line. By using processing techniques based on the unique drive signals, an amount of touch corresponding to each sense point can be extracted from the sense signal. The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.
US11675444B1
A common method for providing user-input to an electronic system consists of tracking the position and motion of an object moved by the user and conveying this information to the electronic system. One embodiment of a positional tracking system for an object has an external and stationary magnetic-field emitter, a magnetic-field sensor which moves with the tracked object, and a microprocessor that compares magnetic-field intensity measurements taken by the sensor and compares it to magnetic-field characteristics defined for the external magnetic field emitter. A nonlinear equation solver, particle filter, or other method is used to determine the position of the sensor in the magnetic field. In this way the position of an object can be tracked using a single magnetic field emission source. This positional information can be combined with an inertial tracking system to mitigate drift errors.
US11675440B2
The description relates to solvent free films and textiles that receive the solvent free films.
US11675434B2
A photoplethysmography (PPG) circuit obtains PPG signals at one or more wavelengths. The PPG signal is processed to identify motion artifacts. The motion artifacts are correlated with predetermined PPG signal patterns associated with movement of a body part or a control command for a user device. The PPG signals may thus be used to detect movement of the body part or determine a control command. A user device may be controlled in response to the determined control command.
US11675429B2
The present disclosure relates to calibration, customization, and improved user experiences for smart or bionic lenses that are worn by a user. The calibration techniques include detecting and correcting distortion of a display of the bionic lenses, as well as distortion due to characteristics of the lens or eyes of the user. The customization techniques include utilizing the bionic lenses to detect eye characteristics that can be used to improve insertion of the bionic lenses, track health over time, and provide user alerts. The user experiences include interactive environments and animation techniques that are improved via the bionic lenses.
US11675427B2
Disclosed are techniques and devices for optical eye tracking based on imaging the eye and tracking certain images of eye features in the eye. The disclosed techniques and devices can be implemented to use structured light to illuminate an eye for obtaining images of the eye to generate accurate eye movement information.
US11675423B2
Embodiments are disclosed for user posture change detection for triggering re-centering of spatial audio. In an embodiment, a method comprises: obtaining source device motion data from a source device and headset motion data from a headset worn by a user; estimating a gravity vector from one of the source device or headset motion data; splitting the source device and headset motion data into vertical and horizontal planes, the vertical plane in the direction of the estimated gravity vector and the horizontal plane perpendicular to the estimated gravity vector; calculating similarity measures based on the source device motion data and headset motion data in the vertical and horizontal planes over a time window; detecting a posture change event based on the calculated similarity measures; and resetting a head tracker error after the detected user posture change event.
US11675421B1
A time-multiplexing resonant drive scheme is described that reuses an inductor circuit for multiple functional purposes in a Mixed Reality (MR) device. A driver circuit and a multiplexer circuit are dynamically configured by a controller circuit for three operating modes. In the first mode, energy is coupled from a battery to the inductor circuit in a forward direction to charge the inductor circuit and generate a positive power supply voltage. In the second mode, energy is coupled from to the inductor circuit in a reverse direction to charge the inductor circuit and generate a negative power supply voltage. In the third mode, the inductor is operated with an antenna as part of a resonance drive circuit, where facial movements of the user can be detected based on the response. Reduced component count and reduced cost requirements are achieved by the described scheme.
US11675418B2
There is provided a program, an information processor, and an information processing method that make it possible to blend motions of a plurality of actors captured by using a motion capture technique and to reproduce the blended motions in real time in an avatar or the like on a virtual space. The program causes a computer to implement a control function of dynamically controlling a motion of an avatar in a virtual space or a robot on a real space, the control function being configured to: capture motions of a plurality of actors on the real space from respective motion sensors attached to the actors; blend the motions of the plurality of actors on the basis of a predetermined algorithm; and dynamically control the motion of the avatar or the robot on the basis of the blend result to cause the avatar or the robot to make a motion reflecting the motions of the plurality of actors.
US11675416B2
A cross-domain power control circuit is disclosed. The circuit includes a first circuit branch having a first transistor coupled to a first supply voltage node and a second circuit branch having a second transistor coupled to the first supply voltage node. A third circuit branch is coupled between a second supply voltage node and a third supply voltage node. A second supply voltage conveyed on the second supply voltage node is less than a first supply voltage conveyed on the first supply voltage node. A fourth circuit branch is coupled between the first and third supply voltage nodes. In a first mode of operation, control circuitry causes the second supply voltage to be conveyed to the third supply voltage node. In a second mode of operation, the control circuitry causes the first supply voltage to be conveyed to the third supply voltage node.
US11675415B2
The disclosure describes artificial reality (AR) systems and techniques that enable hierarchical power management of multiple devices within a multi-device AR system. For example, a multi-device AR system includes a device comprising one of a peripheral device configured to generate artificial reality content for display or a head-mounted display unit (HMD) configured to output artificial reality content. The device comprises a System on a Chip (SoC) that includes a host subsystem and plurality of subsystems. Each subsystem includes a child energy processing unit configured to manage power states for the subsystem. The host subsystem includes a parent energy processing unit configured to direct power management of each of the child energy processing units of the plurality of subsystems.
US11675410B2
A monitoring system predicts voltage droops at a processor by monitoring one or more performance characteristics of the processor, selecting a response policy based on the prediction, and adjusting a parameter of the processor. Multiple predictions of voltage droop conditions at different locations of the processor are made simultaneously, with the processor generating one or more responses and resulting in adjusting one or more parameters of the processor. By predicting voltage droop conditions before they occur, the deleterious effects of such droop conditions can be minimized or avoided.
US11675407B2
A system incorporating a smartphone comprising a smartphone and add-on device coupled to each other via combined data/power interface, wherein the smartphone comprises a rechargeable battery connected to battery protection circuitry and the add-on device optionally comprises a rechargeable battery connected to battery protection circuitry as well, the combined data/power interface comprises: one or more data pins for transferring data between the smartphone and the add-on device; one or more regulated power delivery pins; and one or more protected-battery power delivery pins, wherein the regulated power delivery pins are used to charge the battery of the smartphone from an external charger coupled to the add-on device, the batteries are connected to the battery protection circuitries that is configured to protect the battery by cutoff or limit the current or voltage on the battery electrodes, the protected-battery power delivery pins are connected to the battery protection circuitries of the smartphone or add-on device. The following power delivery paths are enabled: (1) the add-on device is powered by the battery of the smartphone through the protected-battery power delivery pins that are connected to the output of the battery protection circuitry of the smartphone. (2) the smartphone is powered by the battery of the add-on device through the protected-battery power delivery pins that are connected to the output of the battery protection circuitry of the add-on device, and (3) the batteries charge each other through the protected-battery power delivery pins that are connected to the output of the battery protection circuitries of smartphone and add-on devices.
US11675406B2
A passive cable adaptor for connecting a data source device with a display device is described. The adaptor has a packet-based interface connector at one end, the connector having a positive main link pin, a negative main link pin, a positive auxiliary channel pin, and a negative auxiliary channel pin. At the other end is a micro serial interface connector, wherein multimedia content is transmitted over the cable adaptor and electrical power is supplied over the cable adaptor simultaneously. The cable adaptor has an auxiliary and hot plug detect (HPD) controller utilized to map the auxiliary channel and HPD signals of the packet-based digital display to the micro serial interface ID signal.
US11675399B1
A fixing device is provided for fixing an expansion card in an electronic device. The fixing device includes a supporting base, a fastening element and an actuating element. The supporting base includes a sliding rail. The sliding rail is located under the expansion card. The sliding rail includes plural first positioning structures. The fastening element includes a sliding part and a locking part. The sliding part is movably installed on the sliding rail. The locking part is protruded from the sliding part. The expansion card is arranged between the locking part and an expansion port of the electronic device. The actuating element includes a pressing part and an elastic part. The pressing part is connected with the sliding part through the elastic part. The pressing part includes a second positioning structure. The second positioning structure is detachably engaged with one of the plural first positioning structures.
US11675396B2
A hinge assembly, including a rotating shaft and a pair of cams, is provided. The cams are sleeved on the rotating shaft so as to be rotatable relative to each other. The pair of cams respectively has a first flat surface and a second flat surface facing each other, and a curved surface adjacent to the first flat surface and the second flat surface. The first flat surface of one of the cams passes by the curved surface to move from one flat surface to the other flat surface of the other cam, so as to enable the pair of cams to move relatively away or closer along an axial direction of the rotating shaft. The curved surfaces of the cams are in surface contact when the first flat surface passes by the curved surface. A portable electronic device is also provided.
US11675393B2
A display device according to an embodiment includes a display panel and a protection layer that is disposed on the display panel, wherein the protection layer includes: a first protection layer; a metal layer that overlaps the first protection layer and includes a hole; and an adhesive layer disposed between the first protection layer and the metal layer. The adhesive layer includes a first area disposed between the first protection layer and the metal layer, and a second area and a third area that are disposed in the hole, wherein a peeling strength of the second area and a peeling strength of the third area are different from each other.
US11675392B2
An electronic device is provided. The electronic device includes a rollable display. The electronic device may include a main bracket configured to support the first portion of the rollable display, a roller member disposed in the first direction from the main bracket and arranged in a third direction perpendicular to the first direction, at least one folding support member disposed between the main bracket and the roller member and configured to support the second portion of the rollable display, a circuit board disposed to overlap at least a portion of the main bracket, at least one electronic component disposed adjacent to the roller member, and a FPCB configured to electrically connecting the main circuit board and the electronic component, wherein the FPCB is disposed to pass through the folding support member and extends from a portion of the circuit board to a portion of the electronic component.
US11675368B2
A system includes one or more processors configured to be disposed onboard a vehicle. When in an active state of the vehicle in which the system receives instructions from an off-board system, the one or more processors receive enforcement targets from an off-board source. The enforcement targets are associated with corresponding portions of a route, and have corresponding associated enforcement activities to be performed based on location of the vehicle relative to the corresponding portions of the route. The one or more processors are also configured to store at least some of the received enforcement targets onboard the vehicle as preserved targets having corresponding preserved enforcement activities, responsive to a transition from the active state to a degraded state of the vehicle in which the enforcement targets are no longer received. Also, the one or more processors are configured to perform the preserved enforcement activities associated with the preserved targets.
US11675366B2
This disclosure relates in general to systems and methods for tracking objects proximate an autonomous vehicle. In particular, an object tracking system capable of re-identifying objects it has temporarily lost line of sight to is described. Re-identification of the objects allows earlier object detections to be used more effectively to predict motion likely to be taken by the objects.
US11675360B2
There is provided an information processing apparatus and an information processing method that can provide more useful information for an action plan of an autonomous mobile body, the information processing apparatus including an action recommendation unit configured to present a recommended action recommended to an autonomous mobile body, to the autonomous mobile body that performs an action plan based on situation estimation. The action recommendation unit determines the recommended action on the basis of an action history collected from a plurality of the autonomous mobile bodies, and on the basis of a situation summary received from a target autonomous mobile body that is a target of recommendation. The information processing method includes presenting, by a processor, a recommended action recommended to an autonomous mobile body, to the autonomous mobile body that performs an action plan based on situation estimation.
US11675351B1
An autonomous mobile device (AMD) builds up electrostatic charges from moving and generates heat from the operation of internal components. In addition to possible user discomfort, electrostatic discharges may damage sensors and electronics. Electrostatic charges are dissipated from the AMD using an electrostatic dissipation structure and conductive wheels. A conductive path between a chassis ground, the electrostatic dissipation structure, and the conductive wheels improves the dissipation of electrostatic charges. Electrostatic charges are also dissipated from components by mounting the components using conductive materials. Sensors may be affixed to a support structure that is affected by thermal expansion. Thermal expansion may distort precise positioning of sensors, reducing accuracy of sensor data. An elastomeric foam may be used to mount sensors to a support structure, allowing for thermal expansion without distorting the positioning of the sensors.
US11675333B2
Methods, systems, and apparatus, including medium-encoded computer program products, for computer aided design of physical structures using generative design processes. A method includes obtaining a design space for a modeled object, one or more design criteria for the modeled object, and one or more in-use load cases; iteratively modifying a generatively designed three dimensional shape of the modeled object in the design space in accordance with the one or more design criteria and the one or more in-use load cases for the physical structure, comprising: performing numerical simulation of the modeled object in accordance the one or more in-use load cases, computing shape change velocities for an implicit surface in a level-set representation of the three dimensional shape, changing the shape change velocities in accordance with a polynomial function, and updating the level-set representation using the shape change velocities to produce an updated version of the three dimensional shape.
US11675326B2
In one embodiment, an apparatus comprises a fabric controller of a first computing node. The fabric controller is to receive, from a second computing node via a network fabric that couples the first computing node to the second computing node, a request to execute a kernel on a field-programmable gate array (FPGA) of the first computing node; instruct the FPGA to execute the kernel; and send a result of the execution of the kernel to the second computing node via the network fabric.
US11675319B2
In certain embodiments, a method includes formulating an optimization problem to determine a plurality of model parameters of a system to be modeled. The method also includes solving the optimization problem to define an empirical model of the system. The method further includes training the empirical model using training data. The empirical model is constrained via general constraints relating to first-principles information and process knowledge of the system.
US11675318B2
A time synchronizer receives UTC (Coordinated Universal Time) time in serial+PPS (Pulse Per Second) format from a GPS (Global Positioning System) device and outputs timestamp data in multiple formats, including: CAN (Controller Area Network), Ethernet, gPTP (generic Precision Time Protocol), and serial+PPS. Multiple data sources receive timestamp data in the multiple formats and each provide data in a unified UTC time base to a sensor-fusion device. The unified UTC time base is based on the timestamp data in the multiple formats output by the time synchronizer. The time synchronizer may perform edge detection for a first transition of an internal clock signal following a transition of the PPS signal received from the GPS device. The internal clock signal may be asynchronous with the PPS signal received from the GPS device. The internal clock signal may have a frequency of 40 MHz.
US11675300B2
An image forming apparatus includes a fixing device that includes an endless belt to convey a print medium, a heating roller to heat the endless belt, a pressing roller that presses the endless belt against the heating roller along a nip region of the endless belt, and a conveyance switching device to move the endless belt between a first position that directs the print medium away from the endless belt when the print medium exits the nip region, and a second position that conveys the print medium to remain in contact with the endless belt when the print medium exits the nip region.
US11675294B2
A heating device according to an embodiment generally includes heat generating parts and temperature sensors. The heat generating parts are divided into a plurality of blocks, so that the plurality of heat generating parts are arranged with a gap therebetween on a substrate in each block. With a temperature detection region provided in each block, the temperature sensors are provided corresponding to the heat generating parts with the gaps being avoided. The temperatures of the heat generating parts are detected by the temperature sensors that are less in number than the plurality of heat generating parts.
US11675293B2
An image forming apparatus includes a first fixing member, a second fixing member, and a controller. The second fixing member includes a first nip forming member and a second nip forming member each configured to nip an endless belt in combination with the first fixing member to form a nip region. A first end face on a first-fixing-member side of the first nip forming member is located closer, than a second end face on a first-fixing-member side of the second nip forming member, to the first fixing member. The controller is capable of executing a first printing process performed in a nip region formed between each of the first nip forming member and the second nip forming member and the first fixing member, and a second printing process performed in a nip region formed between only the first fixing member and the first fixing member.
US11675289B2
A developing cartridge may include: a casing configured to accommodate developer therein, the casing extending in the first direction; a coupling rotatable about a first axis extending in the first direction, the coupling being positioned at one side of the casing in the first direction; a detection gear rotatable about a second axis extending in the first direction, the detection gear being positioned at another side of the casing in the first direction; and a storage medium including an electric contact surface, the electric contact surface being positioned at the one side of the casing in the first direction.
US11675288B2
An image forming apparatus includes an image bearing member, a developing member that supplies a developer of a regular polarity, a developer supply member that supplies developer to the developing member, and a control unit that applies a first voltage to the developing member and a second voltage to the developer supply member. The control unit executes an image forming operation, and a rotational operation in which the developer supply member rotates in a state in which the first voltage of a regular polarity is applied thereto. The rotational operation includes a first rotational operation in which a potential difference is a first potential difference and a second rotational operation in which the developing member and the developer supply member rotate in a state in which the second voltage having the same polarity as the regular polarity and having a greater absolute value is applied.
US11675280B2
A system is disclosed. The system includes a cleaning device and a scanner device. The cleaning device is configured to clean a mask. The scanner device is coupled to the cleaning device and is configured to receive the mask, a reference image and a real-time image that is captured at the mask. The reference image includes at least one first mark image having a plurality of mapping marks on the mask. The real-time image includes at least one second mark image having the plurality of mapping marks on the mask. The scanner device is configured to map the at least one second mark image in the real-time image with the at least one first image in the reference image, when a lithography exposing process is performed. A method is also disclosed herein.
US11675277B2
Two pairs of alignment targets (one aligned, one misaligned by a bias distance) are formed on different masks to produce a first pair of conjugated interference patterns. Other pairs of alignment targets are also formed on the masks to produce a second pair of conjugated interference patterns that are inverted the first. Misalignment of the dark and light regions of first interference patterns and the second interference patterns in both pairs of conjugated interference patterns is determined when patterns formed using the masks are overlaid. A magnification factor (of the interference pattern misalignment to the target misalignment) is calculated as a ratio of the difference of misalignment of the relatively dark and relatively light regions in the pairs of interference patterns, over twice the bias distance. The interference pattern misalignment is divided by the magnification factor to produce a self-referenced and self-calibrated target misalignment amount, which is then output.
US11675263B2
Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; and an absorber layer comprising tantalum and iridium or ruthenium and antimony.
US11675261B2
Provided is an illumination system for providing an illumination beam. The illumination system includes at least one light source, a movable reflective element, a lens element, and a light uniformizing element. The light source is configured to emit at least one beam. The beam is reflected by the movable reflective element, and then passes through the lens element and the light uniformizing element to form an illumination beam. An optical effective area of the beam on the lens element is configured to be larger than that of the beam on the movable reflective element by motion of the movable reflective element. The optical effective area is an area of a union of each beam that irradiates the lens element or the movable reflective element at different times. A projection device is also provided. The illumination system and projection device provide a uniformized illumination beam and improve the projection effect.
US11675254B2
A quick-assembly component includes a quickly-assembly plate and a quick-assembly seat. The quick-assembly plate has a first surface and a second surface oppositely arranged along a thickness direction of the quick-assembly plate. The first surface is provided with a recess; a side wall of the recess is provided with a clamping slot communicating with the recess. The quick-assembly seat includes a seat body, a touch assembly, and clamping assemblies. The touch assembly includes touch members that are movable relative to the seat body along the thickness direction of the quick-assembly plate. The clamping assemblies each include a clamping member and a first restoring member provided between the clamping member and the seat body. The clamping member is movable relative to the seat body to allow the first restoring member to accumulate and release a restoring force.
US11675238B2
A display panel includes: a first substrate and a second substrate; and a liquid crystal layer. The first substrate includes a first base, and a light extraction portion and a light conversion portion that are disposed on a first side and located in each sub-pixel region. The first base has the first side facing the second substrate. A refractive index of the light extraction portion is greater than or equal to a refractive index of the first base, and a refractive index of a portion of the light conversion portion in direct contact with the first base is less than the refractive index of the first base. The second substrate includes a second base, and at least one light reflecting structure and at least one light absorbing structure that are disposed at a side of the second base facing the first substrate and located in the sub-pixel region.
US11675237B2
An array substrate includes a base substrate, a light-shielding pattern, a buffer pattern, an active layer, a gate insulating layer and a first passivation layer provided with a first via, a second via and a third via, and a source and a drain. An entire orthographic projection of the active layer on the base substrate coincides with an orthographic projection of at least part of the buffer pattern on the base substrate. The orthographic projection of the buffer pattern on the base substrate is within a border of an orthographic projection of the light-shielding pattern on the base substrate, and its area is less than an area of the orthographic projection of the light-shielding pattern on the base substrate. One of the source and the drain is coupled to the active layer through the first via, and another one is coupled to the active layer through the second via and the light-shielding pattern through the third via.
US11675233B2
The present, invention provides a liquid crystal display device that can exhibit excellent retardation stability against heat and that can prevent reduction in contrast ratio due to scattering even when the liquid crystal display device includes a retardation layer formed by polymerization of a reactive monomer, and a method for producing a liquid crystal display device suitable for production of the liquid crystal display device. The liquid crystal display device of the present invention includes paired substrates and a liquid crystal layer provided between the paired substrates. At least one of the paired substrates includes a retardation layer formed from a polymer of at least one type of monomer. The at least one type of monomer includes a photo-aligning monomer that is to be aligned by polarized light.
US11675232B2
Disclosed is a display apparatus and light source device which includes an optical dome having a specifically defined shape to be able to maintain an optical profile of a light source. A display apparatus includes a printed circuit board (PCB); a light emitting diode (LED) chip mounted on the PCB and configured to emit light; an optical dome disposed over and enclosing the LED chip; a liquid crystal panel configured to block or pass light output from the LED chip; and an optical film arranged between the LED chip and the liquid crystal panel, wherein a ratio of a height of the optical dome to a diameter of a bottom surface of the optical dome is 0.25 to 0.31.
US11675229B2
A display apparatus including a frame, light emitting diode chips separated from each other and regularly arranged in a matrix on the frame, an optical part including a display panel and at least one of a phosphor sheet and an optical sheet, a light guide plate disposed between the frame and the optical part to cover the light emitting diode chips, at least one reflector disposed between the frame and the light guide plate to reflect at least part of light emitted from the light emitting diode chip to direct at least part of light emitted therefrom to the light guide plate, and a first-type electrode and a second-type electrode, in which at least one of the light emitting diode chips is a flip-chip type and includes a first-type semiconductor layer electrically connected to the first-type electrode and a second-type semiconductor layer electrically connected to the second-type electrode.
US11675228B2
According to one embodiment, an illumination device includes a substrate, a plurality of light emitting elements mounted on the substrate, an optical sheet located on the light emitting elements, and a foam located between the light emitting elements and the optical sheet and overlapping the light emitting elements.
US11675225B2
An optical device manufacturing method and an optical device capable of forming a desired cured resin layer regardless of shapes of cover members. The method includes closely laminating a cover member having an opening onto a mold member having a fitting projection which fits to the opening so that the fitting projection is fitted to the opening to form a hollow laminated body capable of being filled with a curable resin; filling the hollow portion of the laminated body with the curable resin; curing the curable resin to form a cured resin layer on the cover member; peeling off the mold member from the cover member; and bonding the cured resin layer and an optical member.
US11675223B2
A display device includes a plurality of light emitting units and a light adjusting layer disposed on the light emitting units. The light adjusting layer includes at least one light adjusting structure, and one light adjusting structure is corresponding to at least three of the light emitting units. The display device provides a sum of viewing-angles of a first number of the light emitting units when the first number of the light emitting units is turned on, and the display device provides a sum of viewing-angles of a second number of the light emitting units when the second number of the light emitting units is turned on. The first number is less than the second number, and the sum of viewing-angles of the first number of the light emitting units is less than the sum of viewing-angles of the second number of the light emitting units.
US11675215B1
This disclosure describes, in part, eyeglass systems configured to automatically adjust an optical-power value, or optical power, of lenses of the eyeglass system based on the distance between eyes of a user wearing the eyeglass system and an object that the user is looking at. In some instances, the eyeglass system may determine a degree-of-convergence (DoC) or convergence angle between the left eye and the right eye of the user to determine the distance between the eyes of the user and the object the user is viewing. Further, the eyeglass system may include a power source and lenses that change their optical-power value based on different voltage or current values provided to the lenses by the power source.
US11675208B1
Reflectometer, spectrophotometer, ellipsometer, and polarimeter systems having a supercontinuum laser source of coherent electromagnetic radiation over a range of between 400 nm to between 4400 nm and 18000 nm, and another source of wavelengths to provide between 400 nm and as high as at least 50000 nm; a stage for supporting a sample and a detector of electromagnetic radiation, wherein the source provides a beam of electromagnetic radiation which interacts with a sample and enters a detector system optionally incorporating a wavelength modifier, where the detector system can be functionally incorporated with combinations of gratings and/or combination dichroic beam splitter-prisms, which can be optimized as regards wavelength dispersion characteristics to direct wavelengths in various ranges to various detectors that are well suited to detect them.
US11675199B1
The disclosed projector device may include (1) a first monochromatic emitter array having a plurality of emitters of a first color disposed in a two-dimensional configuration and (2) a second monochromatic emitter array having a plurality of emitters of a second color disposed in a two-dimensional configuration. The first and second monochromatic emitter arrays may be configured to emit images of the first and second colors into a waveguide configuration, and the first color may be different than the second color. Associated display systems and methods are also provided.
US11675198B2
Eyewear providing an interactive augmented reality experience by displaying virtual 3D content in a 3D frame on a display forming a field of view (FOV). The user can manipulate the displayed 3D frame using control components, such as touchpad of the eyewear device and the mobile device including control components. The 3D frame is displayed around the 3D content to avoid FOV clipping of the 3D content by the display which distracts from the virtual experience and draws attention to the device's limitations. The 3D frame is illustrated as a window positioned in a central portion of a virtual scene displayed on display. The 3D frame can be manipulated with reference to the virtual scene by the user using the control inputs, such as by rotating the 3D frame about a non-visual vertical axis within the virtual scene to create a seamless transition. Upon advancing the 3D frame to the next/previous frame having different 3D content, an event, such as playing animation, can be triggered.
US11675197B1
Systems and methods for auto-calibrating a virtual reality (VR) or augmented reality (AR) head-mounted display to a given user with a refractive condition without adding corrective lenses to optical elements of the head-mounted display and without requiring subjective refraction procedures. A method comprises projecting a grid onto an eye of a user using a light source of a head-mounted display worn by the user, capturing the grid as-reflected from the eye using a camera of the head-mounted display, determining a pattern of a reflection of the grid based on the grid as-reflected, generating an aberration map based on a difference between the pattern as-reflected and the grid as-projected, and determining a correction to apply to at least one viewing lens of the head-mounted display worn by the user based on the aberration map.