摘要:
A medical implant porous scaffold structure having low modulus, wherein said structure is formed by multiple basic units superposed sequentially along the three-dimensional directions in three-dimensional space, each of the basic units is composed of a quadrangular prism or hexagonal prism having central interconnected pores encircled by four or six side walls, each of the side walls is composed by a "X-type" frame structure formed by two crossed ribs, and the central interconnected pores of the adjacent basic units arranged along the axis direction of the quadrangular prism or the hexagonal prism are interconnected to each other. The structure could not only reduce the modulus of the implant, make the modulus of the implant and strength achieve an ideal match, improve the configuration of traditional metal implants to optimize the distribution of mechanical and weaken the stress shielding effect; but also has a regular interconnected pores structure which is conducive to bone tissue in-growth, and can increase mutual locking of bone tissue and implant and shorten the recovery time of patients.
摘要:
Medical devices and method for making and using the same are disclosed. An example medical device may include implantable medical device for use along the biliary and/or pancreatic tract. The implantable medical device may include a tubular member having a first end configured to be disposed within the duodenum of a patient and a second end configured to be disposed adjacent to a pancreatic duct and/or bile duct. The tubular member may have a body including one or more wire filaments that are woven together. The tubular member may also have an outer surface with a longitudinal channel formed therein.
摘要:
A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
摘要:
A method of forming an implant to be implanted into living bone is disclosed. The method comprises the act of roughening at least a portion of the implant surface to produce a roughened surface. The method further comprises the act of depositing discrete nanoparticles on the roughened surface though a one-step process of exposing the roughened surface to a solution. The nanoparticles comprise a material having a property that promotes osseointegration.
摘要:
A system and method for developing customized apparatus for use in one or more surgical procedures is disclosed. The system and method incorporates a patient's unique anatomical features or morphology, which may be derived from capturing MRI data or CT data, to fabricate at least one custom apparatus. According to a preferred embodiment, the customized apparatus comprises a plurality of complementary surfaces based on a plurality of data points from the MRI or CT data. Thus, each apparatus may be matched in duplicate and oriented around the patient's own anatomy, and may further provide any desired axial alignments or insertional trajectories. In an alternate embodiment, the apparatus may further be aligned with at least one other apparatus used during the surgical procedure.
摘要:
The invention relates to a method for treating an implant surface intended for implantation into bone tissue wherein a microroughness comprising pores and peaks having a pore diameter of ≤ 1 µm, a pore depth of ≤ 500 nm, and a peak width, at half the pore depth, of from 15 to 150 % of the pore diameter is provided. The invention also relates to an implant comprising a surface having the above characteristics.