Abstract:
The invention relates to a charged particle lithography system for exposing a target. The system includes a charged particle beam generator for generating a charged particle beam; an aperture array (6) for forming a plurality of beamlets from the charged particle beam; and a beamlet projector (12) for projecting the beamlets onto a surface of the target. The charged particle beam generator includes a charged particle source (3) for generating a diverging charged particle beam; a collimator system (5a,5b,5c,5d; 72;300) for refracting the diverging charged particle beam; and a cooling arrangement (203) for removing heat from the collimator system, the cooling arrangement comprising a body surrounding at least a portion of the collimator system.
Abstract:
An improved method and apparatus for shutting down and restoring an ion beam in an ion beam system. Preferred embodiments provide a system for improved power control of a focused ion beam source, which utilizes an automatic detection of when a charged particle beam system is idle (the beam itself is not in use) and then automatically reducing the beam current to a degree where little or no ion milling occurs at any aperture plane in the ion column. Preferred embodiments include a controller operable to modify voltage to an extractor electrode and/or to reduce voltage to a source electrode when idle state of an ion source of the charged particle beam system is detected.
Abstract:
Die Erfindung betrifft eine Anordnung zur Beleuchtung eines Substrates mit mehreren individuell geformten steuerbaren Partikelstrahlen, insbesondere für die Elektronenstrahllithographie in der Halbleiterindustrie. Die Aufgabe, eine neue Möglichkeit zur Beleuchtung eines Substrats (91) mit mehreren individuell geformten steuerbaren Partikelteilstrahlen (118) zu finden, die eine hochauflösende Strukturierung von Substraten mit einem hohen Substratdurchsatz gestattet, ohne die Flexibilität der anwendbaren Strukturmuster zu beschränken oder infolge einer geforderten Flexibilität den hohen Substratdurchsatz einzuschränken, wird erfindungsgemäß gelöst, indem ein erstes und ein zweites Aperturblendenarray als Multiformatblendenarrays (41, 42) zur Erzeugung von Partikelteilstrahlen (118) mit unterschiedlichen Strahlquerschnitten ausgebildet sind und dem ersten und dem zweiten Multiformatblendenarray (41,42) mindestens drei Multistrahldeflektorarrays (51, 52, 53) zur individuellen Ablenkung der Partikelteilstrahlen (118) zugeordnet sind, wobei mindestens ein Multistrahldeflektorarray (51) zwischen ersten und zweiten Multiformatblendenarray (41, 42) angeordnet ist, um unterschiedliche Querschnitte der Partikelteilstrahlen (118) zu erzeugen, mindestens ein zweites Multistrahldeflektorarray (52) in der Nähe des zweiten Multiformatblendenarrays (42) angeordnet ist, um einzelnen Partikelteilstrahlen (118) in individuelle Crossover abzulenken oder auszutasten, und mindestens ein drittes Multistrahldeflektorarray (53) in einer Entfernung von 10-20 % des Abstandes zum nächsten Crossover (112) dem zweiten Multiformatblendenarrays (42) nachgeordnet ist, um unterschiedliche Positionen der Partikelteilstrahlen (118) auf dem Substrat (91) zu erzeugen.
Abstract:
Electron-beam-induced chemical reactions with precursor gases are controlled by adsorbate depletion control. Adsorbate depletion can be controlled by controlling the beam current, preferably by rapidly blanking the beam, and by cooling the substrate (54). The beam (12,13) preferably has a low energy to reduce the interaction volume. By controlling the depletion and the interaction volume, a user has the ability to produce precise shapes.
Abstract:
A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
Abstract:
A coating is applied to a work piece (222) in a charged particle beam system (200) without directing the beam (218) to the work piece. The coating is applied by sputtering, either within the charged particle beam vacuum chamber (226) or outside the charged particle beam vacuum chamber. In one embodiment, the sputtering is performed by directing the charged particle beam (218) to a sputter material source (242), such as a needle (240) from a gas injection system. Material is sputtered from the sputter material source onto the work piece to form, for example, a protective or conductive coating, without requiring the beam to be directed to the work piece, thereby reducing or eliminating damage to the work piece.
Abstract:
A compact electron microscope uses a removable sample holder having walls that form a part of the vacuum region in which the sample resides. By using the removable sample holder to contain the vacuum, the volume of air requiring evacuation before imaging is greatly reduced and the microscope can be evacuated rapidly. In a preferred embodiment, a sliding vacuum seal allows the sample holder to be positioned under the electron column, and the sample holder is first passed under a vacuum buffer to remove air in the sample holder.
Abstract:
A method and an apparatus are for three-dimensional tomographic image generation in a scanning electron microscope system. At least two longitudinal marks are provided on the top surface of the sample which include an angle therebetween. In consecutive image recordings, the positions of these marks are determined and are used to quantify the slice thickness removed between consecutive image recordings.