Abstract:
A system and method permits for the separation of auto-fluorescence from a signal by applying a single probe to a sample, exciting the sample with a single wavelength light source, thereby emitting a light a distance from the light source. The emitted light is split, and the split light is collected into two or more distinct channels. A first channel of the distinct channels is positioned closer to the light source frequency than a second distinct channel of the distinct channels, and the second channel is closer to the emission frequency of the single probe than is the first channel. The light collected in the first channel and the light collected in the second channel are investigated, and an output signal is generated based upon the investigation.
Abstract:
A system and method permits for the separation of auto-fluorescence from a signal by applying a single probe to a sample, exciting the sample with a single wavelength light source, thereby emitting a light a distance from the light source. The emitted light is split, and the split light is collected into two or more distinct channels. A first channel of the distinct channels is positioned closer to the light source frequency than a second distinct channel of the distinct channels, and the second channel is closer to the emission frequency of the single probe than is the first channel. The light collected in the first channel and the light collected in the second channel are investigated, and an output signal is generated based upon the investigation.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.
Abstract:
A multi-channel fluorescence measuring optical system and a multi-channel fluorescence sample analyzer using the optical system are provided. The multi-channel fluorescence measuring optical system, which irradiates light onto a plurality of sample channels and detecting fluorescence radiated from samples, includes: a light source (60a-d); an integrator (70) for giving the light irradiated from the light source a uniform intensity distribution; a sample holder (80) having a plurality of sample channels on which the samples (m) are mounted, wherein the samples are exited by the light emitted from the integrator; and a beam splitter (75) between the integrator and the sample holder for dividing the incident light in a predetermined ratio. Since the light intensities of fluorescence images are detected using optical fiber bundles (85a-d) and photodiodes (89a-d), the manufacturing cost can be greatly reduced, and the optical system can be miniaturized.
Abstract:
The system includes a bundle of elongate optical fibers, multiple probes, a well, a light source and a detector. The optical fibers each have a first end remote from a second end, Each of the multiple probes is attached to one of the optical fibers within a predetermined section between each of the optical fiber’s first and second ends. The well is configured to hold a solution comprising a target and to receive at least the predetermined section of each of the optical fibers. The light source is configured to direct light into the first end of each of the optical fibers. Finally, the detector is configured to detect light emitted by the binding of the target to at least one of the multiple probes. In some embodiments, there are multiple bundles and multiple wells.
Abstract:
A fibre optic epi-fluorescence imaging system in which the optical fibres are rearranged so that the system can be used for measuring luminescence samples.
Abstract:
A fluorescence sensing device for determining the presence or concentration of an analyte in a liquid or gaseous medium is constructed of a fiber optic plate (12) comprising optical fibers having relatively small numerical apertures. The fiber optic plate is positioned on a photodetector and has a layer of analyte-permeable fluorescent matrix (22) or coated waveguide material on its top surface. The fluorescent matrix or waveguide coating contains indicator molecules whose fluorescence is affected by the local presence of analyte. A light source emits light into the fluorescent matrix in a direction generally parallel to the top surface of the fiber optic plate. Upon absorbing light from the light source, indicator molecules in the fluorescent matrix emit fluorescent light which is transmitted through the fiber optic plate to the photodetector.
Abstract:
A fibre optic coupling plate (24) has a sample viewing face for receiving light from a sample (12), an output window (18) for conveying sample originating (emitted) light to an imaging detector and an additional window through which excitation radiation can be projected. A primary light is provided through the plate made up of optical fibres which will convey light entering the viewing face, directly and with minimal loss, to the output window, and a secondary light path separate from the primary light path, by which excitation radiation entering the additional window is conveyed to the viewing face for irradiating the sample.
Abstract:
The translucency of a material is determined by illuminating the material and detecting the intensity of radiation leaving the material as a function of distance from the radiation source. The resulting measurements may be used to determine a translucency gradient for the material. In the case of materials in sheet form or having a defined thickness, the translucency can be measured in transmission mode or back scattering mode to measure through translucency or surface translucency .
Abstract:
A method for counting the number and measuring the intensity of light pulses produced in a scintillator by the chemiluminescence labels or radioisotopes used in biochemical applications in plane-like samples (13) so that in addition to the intensity of the light pulses, also the position of each light pulse is determined. An image detector (20) is used in measuring so that the light-sensitive surface of the image detector and the sample (13) are brought as close to each other as possible.