摘要:
A micro-electro-mechanic actuator device (1; 85; 95) comprising: a fixed structure (4); and a mobile structure (2), which includes a first deformable band (47c) and a further second deformable band (47a) and a further third deformable band (47b), which extend on opposite sides of the first deformable band, each carrying a piezoelectric actuator (50i-50j). In a working condition, in which the second and third piezoelectrics are biased by a working voltage, the second and third deformable bands (47a, 47b) are subjected to a negative bending, while the first deformable band (47c) is subjected to a positive bending. There are thus generated two translations that add together, causing a displacement of the first deformable band greater than the one that may be obtained by a single membrane of equal base area.
摘要:
MEMS device (21; 61; 91; 101) including: a semiconductor support body (22) having a first cavity (24); a membrane (26; 56; 106) including a peripheral portion, fixed to the support body (22), and a suspended portion; a first deformable structure (45; 68; 98) at a distance from a central part of the suspended portion of the membrane (26; 56; 106); a second deformable structure (44; 66; 96) laterally offset relative to the first deformable structure (45; 68; 98) towards the peripheral portion of the membrane (26; 56; 106); and a projecting region (40) fixed under the membrane (26; 56; 106); and wherein the second deformable structure (44; 66; 96) is deformable so as to translate the central part of the suspended portion of the membrane (26; 56; 106) along a first direction; and wherein the first deformable structure (45; 68; 98) is deformable so as to translate the central part of the suspended portion of the membrane (26; 56; 106) along a second direction.
摘要:
A MEMS device comprising a fixed structure (22) and a suspended structure (26) including an internal structure (29; 109) and a first arm (B1) and a second arm (B2), each of which has a respective first end and a respective second end, the first ends being fixed to the fixed structure and being angularly arranged at a distance apart, the second ends being fixed to the internal structure, being angularly arranged at a distance apart and being arranged angularly in a same direction of rotation with respect to the corresponding first ends. The MEMS device further includes a number of piezoelectric actuators (50, 52, 54, 56), each of which can be driven so as to cause deformation of a corresponding arm, thus causing a rotation of the internal structure. In resting conditions, each of the first and second arms has a respective elongated portion (30, 32) with a respective concavity. The internal structure extends in part within the concavities of the elongated portions of the first and second arms.
摘要:
A micromechanical device (50) having an tiltable structure (52) rotatable about a first rotation axis (B); a fixed structure (51); and an actuation structure (54) of a piezoelectric type, coupled between the tiltable structure and the fixed structure. The actuation structure (54) is formed by spring elements (55, 56) having a spiral shape. The spring elements (55, 56) are each formed by a plurality of actuation arms (70-73) extending transversely to the first rotation axis (B), each actuation arm carrying a respective piezoelectric band (74, 75) of piezoelectric material. The actuation arms are divided into two sets biased in phase opposition to obtain rotation in opposite directions of the tiltable structure about the first rotation axis (B).
摘要:
A fluid ejection device (1), comprising: a first semiconductor body (2) including an actuator (3), which is operatively coupled to a chamber (6) for containing the fluid and is configured to cause ejection of the fluid; and a channel (11a) for inlet of the fluid, which extends in a first direction (Z) and has a section having a first dimension (A 1 ); and a second semiconductor body (8), which is coupled to the first semiconductor body (2) and has an ejection nozzle (13) configured to expel the fluid. The second semiconductor body (8) further comprises a first restriction channel (16), which is fluidically coupled to the inlet channel (11a), extends in a second direction (X) orthogonal to the first direction (Z) and has a respective section with a second dimension (A 3 ) smaller than the first dimension (A 1 ) so as to form a restriction between the inlet channel (11a) and the chamber (6).
摘要:
Micromachined pressure transducer including: a fixed body (5) of semiconductor material, which laterally delimits a main cavity (7); a transduction structure (6), which is suspended on the main cavity (7) and includes at least a pair of deformable structures (10) and a movable region (8), which is formed by semiconductor material and is mechanically coupled to the fixed body (5) through the deformable structures (10). Each deformable structure (10) includes: a support structure (15) of semiconductor material, which includes a first and a second beam (20,22), each of which has ends fixed respectively to the fixed body (5) and to the movable region (8), the first beam (20) being superimposed, at a distance, on the second beam (22); and at least one piezoelectric transduction structure (12,14), mechanically coupled to the first beam (20). The piezoelectric transduction structures (12,14) are electrically controllable so that they cause corresponding deformations of the respective support structures (15) and a consequent translation of the movable region (8) along a translation direction (H).
摘要:
A piezoelectric microelectromechanical structure (10), provided with a piezoelectric layer structure (11) having a main extension in a horizontal plane (xy) and a variable cross-section in a plane (xz) transverse to the horizontal plane, comprises a bottom electrode (12), a piezoelectric material (14) constituted by a PZT film arranged on the bottom electrode, and a top electrode (16) arranged on the piezoelectric material, wherein the piezoelectric material has a first thickness (w1) along a vertical axis (z) at a first area (14') and a second thickness (w2) along the vertical axis (z) at a second area (14"), the second thickness being smaller than the first thickness. A corresponding manufacturing process is also disclosed.
摘要:
The MEMS actuator (10) is formed by a main body (15) that has a central portion (29A), couplable to a substrate (11), and a peripheral portion (29B), which is suspended over the substrate when the central portion is coupled to the substrate and has a deformable structure (35*), which at rest has a spiral planar shape, extends around the central portion (29A), and forms a plurality of membranes (35) arranged in succession. The MEMS actuator has a plurality of bearing structures (38, 39) and, for each bearing structure, a corresponding piezoelectric actuator (40). The bearing structures are fixed at the top to the deformable structure (35*) and laterally delimit corresponding cavities (37), each having a lateral opening (AP) facing the central portion (29A) of the main body (15) and closed at the top by a corresponding membrane (35), of which a fixed part is fixed to the underlying bearing structure and a suspended part is laterally offset with respect to the underlying bearing structure. The piezoelectric actuators are controllable so as to cause a deformation of the corresponding membrane and a rotation of the bearing structures around the central portion of the main body.
摘要:
The MEMS actuator (150) is formed by a substrate (50'), which surrounds a cavity (100); by a deformable structure (105) suspended on the cavity; by an actuation structure (65) formed by a first piezoelectric region (61) of a first piezoelectric material, supported by the deformable structure and configured to cause a deformation of the deformable structure; and by a detection structure (90) formed by a second piezoelectric region (80) of a second piezoelectric material, supported by the deformable structure and configured to detect the deformation of the deformable structure.
摘要:
The MEMS actuator (50) is formed by a body (51), which surrounds a cavity (52) and by a deformable structure (54), which is suspended on the cavity and is formed by a movable portion (56) and by a plurality of deformable elements (55). The deformable elements are arranged consecutively to each other, connect the movable portion to the body and are each subject to a deformation. The MEMS actuator (50) further comprises at least one plurality of actuation structures (80A, 80B), which are supported by the deformable elements (55) and are configured to cause a translation of the movable portion greater than the deformation of each deformable element (55). The actuation structures each have a respective first piezoelectric region (82).