Abstract:
2.1. Vorrichtungen für den optischen Direktempfang für mehrere Wellenlängen werden bislang aus diskreten Komponenten in Modulen mit Führung der optischen Wellen in freien Strahlengängen zwischen den einzelnen Funktionselementen ausgeführt. Die Kosten für diese Ausführungen sind für einen breiten Einsatz prohibitiv hoch. Es wird eine besonders kostengünstige Vorrichtung angegeben. 2.2. Die Vorrichtung besteht im wesentlichen aus einem auf einem Substrat (10) aus Silizium integrierten wellenleitenden Wellenlängendemultiplexer (3) zum Führen und Verteilen von in einem gemeinsamen Kanal (1) ankommenden Wellen (λ₁, λ₂, λ₃) auf verschiedene, zu integrierten optoelektronischen Detektoren (41, 42, 43) führende Kanäle (71, 72, 73). Eine Weiterbildung der Vorrichtung ist eine integrierte bidirektionale Funktionseinheit, bestehend aus integriertem Sender und integriertem Direktempfänger. 2.3. Anwendung in der optischen Nachrichtentechnik.
Abstract:
Die Erfindung bezieht sich auf eine Detektionsvorrichtung (1) und ein Verfahren zur Detektion von Licht, das mehrere Wellenlängenkomponenten in einem Wellenlängenbereich umfasst. Die Detektionsvorrichtung und das Verfahren weisen eine über den Wellenlängenbereich optimierte Detektionsempfindlichkeit auf und ermöglichen optional eine spektral aufgelöste Detektion des Lichts.
Abstract:
Methods are provided to identify spatially and spectrally multiplexed probes in a biological environment. Such probes are identified by the ordering and color of fluorophores of the probes. The devices and methods provided facilitate determination of the locations and colors of such fluorophores, such that a probe can be identified. In some embodiments, probes are identified by applying light from a target environment to a spatial light modulator that can be used to control the direction and magnitude of chromatic dispersion of the detected light; multiple images of the target, corresponding to multiple different spatial light modulator settings, can be deconvolved and used to determine the colors and locations of fluorophores. In some embodiments, light from a region of the target can be simultaneously imaged spatially and spectrally. Correlations between the spatial and spectral images over time can be used to determine the color of fluorophores in the target.
Abstract:
Method of determining a chemical composition of a slag portion (5), the method comprising the steps of: - providing the slag portion, the slag portion having a surface (S), - collecting light (L) reflected from the surface using an optical system (10), - obtaining a data set from the collected light, the data set at least defining a matrix containing values representative of an intensity of a part (L M,l ) of the collected light, each part being respectively collected from one of a plurality of points (M) at one of a plurality of wavelengths, the matrix being indexed at least by: - a plurality of space coordinates of the plurality of points, and - a plurality of spectral parameters representative of the plurality of wavelengths, - conditioning the matrix in order to obtain a reduced set of values, and - performing a mathematical algorithm using the reduced set of values in order to obtain the chemical composition. Corresponding installation.
Abstract:
The bandwidth selection mechanism includes a first actuator mounted on a second face of a dispersive optical element, the second face being opposite from a reflective face, the first actuator having a first end coupled to a first end block and a second end coupled to a second end block, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body of the dispersive optical element along the longitudinal axis of the body and in a first direction normal to the reflective face of the dispersive optical element. The bandwidth selection mechanism also includes a second actuator being operative to apply equal and opposite forces to bend the body along the longitudinal axis of the body, in a second direction perpendicular to the reflective face of the dispersive optical element.
Abstract:
A specimen measuring device includes: a light source device that irradiates a specimen surface of a specimen with illumination light from multiple illumination units at a plurality of illumination angles; a spectral camera device that is arranged above the specimen surface, spectrally separates reflected light from the specimen surface, and acquires 2D spectral information through a single image capturing operation; and a calculating unit that calculates deflection angle spectral information of the specimen surface used to measure a measurement value of a certain evaluation item of the specimen using a change in an optical geometrical condition of an illumination direction and an image capturing direction between pixels in an X axis direction and a Y axis direction of the spectral information.
Abstract:
The invention relates to a method for a marker-free demarcation of distinct areas of a tissue in vitro, comprising the steps of recording at least two different spectra and/or spectral images of the tissue, analyzing the recorded spectra and/or spectral images by a multivariate data analysis to segment the tissues into distinct areas of similar spectral signature, and classifying each area as physiological, pathological or dead according to its spectral signature.