Abstract:
Described is a system for inducing and detecting multi-photon processes, in particular multi-photon fluorescence or higher harmonic generation in a sample. The system comprises a dynamically-controllable light source, said dynamically-controllable light source comprising a first sub-light source, said first sub-light source being electrically controllable such as to generate controllable time-dependent intensity patterns of light having a first wavelength, and at least one optical amplifier, thereby allowing for active time-control of creation of multi-photon-excitation. The system further comprises a beam delivery unit for delivering light generated by said dynamically-controllable light source to a sample site, and a detector unit or detector assembly for detecting signals indicative of said multi-photon process, in particular multi-photon fluorescence signals or higher harmonics signals.
Abstract:
A medical imaging system for identifying a target structure (TS), e.g. a tumor, in a biological tissue. A hyperspectral camera system is used for imaging a surface area (A1) of the tissue (BT), e.g. with a limited spectral resolution, but enough to allow identification of suspicious areas where the target structure (TS) may be, e.g. such areas can be visually indicated on a display to the operator. A probe (PR), e.g. an optical surface probe, is used to provide probe measurement of a smaller surface area (A2) of the tissue, but with more information indicative of the target structure. The probe is selected to provide a higher specificity with respect to identification of the target structure than the hyperspectral camera (HSC). The hyperspectral processing algorithm (PP) is then calibrated based on probe measurement data performed within the suspicious areas, thus providing a calibrated hyperspectral processing algorithm resulting in images with an enhanced sensitivity to identify the target structure. Only few probe measurements are required to significantly improve the resulting image, thereby providing a reliable and fast target structure (TS) identification.
Abstract:
An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.
Abstract:
A spectrometer with improved resolution includes a spectral domain modulator having a periodic response in the spectral domain to modulate a wideband source spectrum and cause one or more shifted bursts in the interferogram.
Abstract:
The invention relates to a method for a marker-free demarcation of distinct areas of a tissue in vitro, comprising the steps of recording at least two different spectra and/or spectral images of the tissue, analyzing the recorded spectra and/or spectral images by a multivariate data analysis to segment the tissues into distinct areas of similar spectral signature, and classifying each area as physiological, pathological or dead according to its spectral signature.
Abstract:
A disclosed remote work system (100) includes a light source (102) and a nonlinear converter (108A-N) optically coupled to and remote from the light source. The nonlinear light converter converts a narrowband light pulse received from the light source to a converted spectrum light pulse. The system also includes a work element (110A-N) coupled to the nonlinear light converter. The work element performs a work operation using the converted spectrum light pulse. A related remote work method includes generating a narrowband light pulse and conveying the narrowband light pulse to a remote location (114). The method also includes converting the narrowband light pulse to a converted spectrum light pulse at the remote location. The method also includes performing a sense operation or work operation at the remote location using the converted spectrum light pulse.
Abstract:
A device and method for identifying solid and powdered materials use near-infrared reflection spectroscopy combined with multivariate calibration methods for analysis of the spectral data. Near-infrared reflection spectroscopy is employed within either the 700-1100 nm or the 900-1700 nm wavelength range to identify solid or powdered materials and determine whether they match specific known materials. Uses include identifying solid and powdered materials with a fast measurement cycle time of about 2 to 15 seconds and with a method that requires no sample preparation, as well as quantitative analysis to determine the concentration of one or more chemical components in a solid or powdered sample that consists of a mixture of components. A primary application involving identification analysis verification of the identify and purity of powdered materials used for fabricating drug tablets and capsules for quality control purposes.
Abstract:
The present invention provides a spectral apparatus for spectrally separating light including a predetermined wavelength, including a slit that the light enters, a first optical system configured to collimate the light from the slit, a transmissive type diffraction element configured to diffract the light from the first optical system, and a second optical system including a first mirror configured to reflect the light diffracted by the transmissive type diffraction element, and a second mirror configured to reflect the light reflected by the first mirror and diffracted by the transmissive type diffraction element, and configured to make the light reciprocally travel between the first mirror and the second mirror via the transmissive type diffraction element.