Abstract:
Le dispositif comprend des moyens (3) pour créer un faisceau d'ions isoénergétiques comprenant des ions qui contiennent une espèce déterminée et sont aptes à se décomposer en donnant des ions constitués de l'espèce ionisée, des moyens (4) pour interagir préférentiellement avec les ions contenant l'espèce et décomposer ceux-ci en faisant apparaître les ions constitués de l'espèce ionisée, et des moyens (5) pour effectuer une séparation énergétique entre les ions constitués de l'espèce ionisée et le reste du faisceau.
Abstract:
Bei einem Sekundärelektronen-Spektrometer für Elektronenstrahlgeräte sollen die elektrischen Felder von Sekundärelktronen-Spektrometer und Sekundärelektronen-Detektor praktisch vollständig gegen die Umgebung abgeschirmt sein. Es wird ein Sekundärelektronen-Spektrometer für Elektronenstrahlgeräte angegeben, welches mit dem Detektor (DT) zu einer nach außen hin streufeldfreien Einheit zusammengefaßt ist. Das Energiefilter (EF) und die Vorrichtung zur Erzeugung eines Ablenkfeldes für die Sekundärelektronen sind optisch dicht aufgebaut. Das Absaugfeld für die Sekundärelektronen hinter dem Energiefilter (EF) ist durch einen spannungsführenden Detektor (E 3 ), eine Rohrelektrode (E 4 ) und eine verschiebbare Gegenelektrode (GE) bestimmt. Hochenergetische Rückstreu-Elektronen (RE) können störungsfrei passieren.
Abstract:
Une colonne de microfabrication (10) d'un faisceau d'ions focalises produit un faisceau d'ions a partir d'une source d'ions (12), et focalise le faisceau a l'aide d'un objectif (24) sur le plan de l'electrode (36). Le filtre ExB (44) separe les especes d'ions au niveau d'une partie de faible energie du faisceau. Le faisceau d'especes selectionnees est d'abord accelere par une lentille de pre-acceleration (38) qui possede un potentiel pouvant etre commande en vue de commander l'energie finale du faisceau sur la cible. Le faisceau est accelere par une lentille d'acceleration finale (54) et est degrossi et focalise sur la cible par cette lentille. Un deflecteur de faisceau (64) deflechit le faisceau pour effectuer un travail programme du faisceau d'ions sur la cible (60).
Abstract:
A method of forming a patterned hard mask on a surface of a substrate uses an accelerated neutral beam with carbon atoms. The objects set forth above as well as further and other objects and advantages of the present invention are achieved by the various embodiment's of the invention described herein below.
Abstract:
The invention relates to a post-column filter (a PCF) for a (Scanning) Transmission Electron Microscope (a (S)TEM). Traditionally these filters use excitations of the optical elements before the slit plane that are identical in both the EFTEM and the EELS mode. Although this eases the task for the person skilled in the art of developing and tuning a PCF, as it reduces the number of degrees of freedom to a manageable amount. Inventors found ways to determine settings of the optical elements before the slit plane for EELS mode that are different from the EFTEM mode and where the performance of the PCF in EELS mode is improved (especially the relative energy range that can be imaged) without degrading the performance of the PCF in EFTEM mode.
Abstract:
A plasma is formed between electrodes to be energized from an electric power source, containing a partially ionized mass having a luminescence region including neutral atoms (NA), primary electrons (PE), secondary electrons (SE), and ions. The method comprises the interspersed steps of: accelerating the primary electrons (PE) toward one of said electrodes (10) polarized by a short, positive, high voltage pulse, impacting primary electrons (PE) against said electrode (10) and ejecting secondary electrons (SE) from it; subsequently, accelerating the secondary electrons (SE) toward the luminescence region by polarization of said electrode (10) by a negative voltage pulse, colliding the secondary electrons with neutral atoms (NA) and producing positive ions (PI) and derived electrons (DE); the negative pulse must have a period of time sufficient to accelerate the positive ions (PI) of the luminescent region towards the electrodes 10 or parts, striking the surface of said electrodes or parts; repeating the previous steps in order to obtain a steady state plasma with a desired degree of ionization. The control of the intensity and the period of the positive and negative pulses allow the control of the degree of ionization and the volume of the luminescent region of the plasma.
Abstract:
A method of producing a corrected beam of charged particles for use in a charged-particle microscope, comprising the following steps: - Providing a non-monoenergetic input beam 3a of charged particles; - Passing said input beam through an optical module comprising a series arrangement of: ▪ A stigmator 33, thereby producing an astigmatism-compensated, energy-dispersed intermediate beam 3b with a particular monoenergetic line focus direction; ▪ A beam selector 37, comprising a slit 43-43b' that is rotationally oriented so as to match a direction of the slit to said line focus direction, thereby producing an output beam 3d comprising an energy-discriminated portion of said intermediate beam.
Abstract:
A chicane blanker assembly for a charged particle beam system includes an entrance and an exit, at least one neutrals blocking structure, a plurality of chicane deflectors, a beam blanking deflector (620), and a beam blocking structure. The entrance is configured to accept a beam of charged particles propagating along an axis. The at least one neutrals blocking structure intersects the axis. The plurality of chicane deflectors includes a first chicane deflector (610), a second chicane deflector, a third chicane deflector, and a fourth chicane deflector sequentially arranged in series between the entrance and the exit and configured to deflect the beam along a path that bypasses the neutrals blocking structure and exits the chicane blanker assembly through the exit. In embodiments, the chicane blanker assembly includes a two neutrals blocking structures. In embodiments, the beam blocking structure is arranged between the third chicane deflector and the fourth chicane deflector.
Abstract:
A method of performing spectroscopy in a Transmission Charged-Particle Microscope comprising: - A specimen holder, for holding a specimen; - A source, for producing a beam of charged particles; - An illuminator, for directing said beam so as to irradiate the specimen; - An imaging system, for directing a flux of charged particles transmitted through the specimen onto a spectroscopic apparatus comprising a dispersing device for dispersing said flux into an energy-resolved array of spectral sub-beams,
which method comprises the following steps: - Using an adjustable aperture device to admit a first portion of said array to a detector, while blocking a second portion of said array; - Providing a radiation sensor in said flux upstream of said aperture device; - Using said sensor to perform localized radiation sensing in a selected region of said second portion of the array, simultaneous with detection of said first portion by said detector; - Using a sensing result from said sensor to adjust a detection result from said detector.