Abstract:
Methods of selecting spectral elements and system components for a multivariate optical analysis system include providing spectral calibration data for a sample of interest; identifying a plurality of combinations of system components; modeling performance of a pilot system with one of the combinations of system components; determining optimal characteristics of the pilot system; and selecting optimal system components from among the combinations of system components.
Abstract:
Various systems for measurement or analysis of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment. The purged environment may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.
Abstract:
The invention relates to an apparatus and processes for optical measurement and detection with real-time closed-loop controls, which enable higher levels of performance. The invention is especially suitable for applications such as spectroscopy; microscopy; biochemical assays; processes and reactions on miniaturized formats (such as those involving micro-/nano-plates, micro-formats & micro-arrays, chemistry-on-chip, lab-on-chip, micro-channels and micro-fluidics, where dimensions are on micron scale and columns are in the sub-nanoliter range). Such “intelligent sensing” allows higher data quality and reliability, higher measurement and analysis throughput and lower cost. The invention uses fast real-time adaptive digital signal processing and controls directly at the point where data is sensed. Through real-time adaptive control of sensors, chemical/opto-mechanical/opto-electronic processes and other components during the measurement process, consistently higher quality results and higher reliability are achieved. This invention furthermore includes an improved image sensor architecture that enables very intra-array dynamic range at fast frame rates and low noise performance.
Abstract:
Methods and optical systems for thermally compensated optical scanning of a target sample. The present invention also relates to methods and systems for performing sample assays, and for producing and measuring optical responses and signatures.
Abstract:
The invention relates to a device for measuring at least one gas component of a gas present in a measuring chamber. Said device comprises at least one radiation source which is adapted to the gas component which is to be detected in relation to the wave length range thereof, and at least one radiation detector which captures radiation emitted by the radiation source and transverses the gas present in the measuring chamber and converts it into electric signals. According to the invention, in order to modify the wave length emitted by the radiation source, the radiation source is applied to a miniaturised thermoelectric component, a miniaturised Peltier-cooler, whereby the electric supply thereof can be adjusted in a variable manner.
Abstract:
A compact, lightweight, portable optical assembly comprising: a platform; and a plurality of optical elements mounted to the platform; wherein the plurality of optical elements are optically connected to one another with free-space couplings so as to form an optical circuit; and further wherein the platform is sufficiently- mechanically robust so as to maintain the free-space optical coupling between the various optical elements. A method for making a compact, lightweight, portable optical assembly, comprising: providing a platform; and mounting a plurality of optical elements to the platform; wherein the plurality of optical elements are mounted to the platform so that they are optically connected to one another with free-space couplings so as to form an optical circuit; and further wherein the platform is sufficiently mechanically robust so as to maintain the free-space optical coupling between the various optical elements.
Abstract:
In one embodiment the disclosure relates to a method and a system for determining the corrected wavelength of a photon scattered by a sample. The method includes the steps of determining a wavelength of a photon scattered from a sample exposed to illuminating photons and passed through a tunable filter and correcting the determined wavelength of the photon as a function of the temperature of the tunable filter and as a function of the bandpass set point of the tunable filter. The step of correcting the determined wavelength can further include determining an offset and adding the offset to the determined wavelength of the photon.
Abstract:
The apparatus and methods herein provide quantitatively controllable light sources and expanded dynamic range endoscopy systems that can improve the quality of images and the ability of users to distinguish desired features when viewing tissues by providing methods and apparatus that improve the dynamic range of images from endoscopes, in particular for example with endoscopes that have dynamic range limited because of small image sensors and small pixel electron well capacity, and other optical system constraints. The apparatus and methods herein, for example, combine light sources with quantitatively variable spectral output and quantitatively variable wavelength dependent intensity distribution with image sensors and controllers to create an expanded dynamic range endoscopy system. By digitally combining illumination data from the digitally controllable light source with the digital image data from the image sensor the system synthesizes expanded dynamic range images whose dynamic range exceeds the dynamic range of the image sensor alone thus providing greatly enhanced information content in the acquired images.
Abstract:
Die vorliegende Erfindung betrifft eine Anordnung und das dazugehörige Verfahren zur Kompensation der Temperaturabhängigkeit von Detektoren in Spektrometern. Bei der erfindungsgemäßen Lösung besteht die Anordnung zur Kompensation der Temperaturabhängigkeit von Detektoren in Spektrometern aus einer Beleuchtungseinheit (1), einem Eintrittsspalt (2), einem abbildenden Gitter (3), einem Detektor (4) und einer Steuer- und Auswerteeinheit (5). Zusätzlich zu einem vorhandenen ersten Temperaturfühler (6) und einer Temperiereinheit (7) ist ein zweiter Temperaturfühler (8) für die Umgebungstemperatur vorhanden. Bei dem erfindungsgemäßen Verfahren wird die Temperiereinheit von der Steuer- und Auswerteeinheit, in Auswertung der von zwei Temperaturfühlern ermittelten Messwerte, so gesteuert, dass die Temperatur des Detektors konstant bleibt. Mit der erfindungsgemäßen Anordnung kann der Quereinfluss der Umgebung auf den Detektor kompensiert werden, so dass die Stabilisierung der Detektortemperatur verbessert wird. Durch die zusätzliche Komponente "Umgebungstemperatur" wird eine verbesserte Stabilisierung der Detektortemperatur gewährleistet.
Abstract:
Die vorliegende Erfindung betrifft eine Anordnung und das dazugehörige Verfahren zur Kompensation der Temperaturabhängigkeit von Detektoren in Spektrometern. Bei der erfindungsgemäßen Lösung besteht die Anordnung zur Kompensation der Temperaturabhängigkeit von Detektoren in Spektrometern aus einer Beleuchtungseinheit (1), einem Eintrittsspalt (2), einem abbildenden Gitter (3), einem Detektor (4) und einer Steuer- und Auswerteeinheit (5). Zusätzlich zu einem vorhandenen ersten Temperaturfühler (6) und einer Temperiereinheit (7) ist ein zweiter Temperaturfühler (8) für die Umgebungstemperatur vorhanden. Bei dem erfindungsgemäßen Verfahren wird die Temperiereinheit von der Steuer- und Auswerteeinheit, in Auswertung der von zwei Temperaturfühlern ermittelten Messwerte, so gesteuert, dass die Temperatur des Detektors konstant bleibt. Mit der erfindungsgemäßen Anordnung kann der Quereinfluss der Umgebung auf den Detektor kompensiert werden, so dass die Stabilisierung der Detektortemperatur verbessert wird. Durch die zusätzliche Komponente "Umgebungstemperatur" wird eine verbesserte Stabilisierung der Detektortemperatur gewährleistet.