摘要:
A microelectromechanical system (MEMS) device includes a high density getter. The high density getter includes a silicon surface area formed by porosification or by the formation of trenches within a sealed cavity of the device. The silicon surface area includes a deposition of titanium or other gettering material to reduce the amount of gas present in the sealed chamber such that a low pressure chamber is formed. The high density getter is used in bolometers and gyroscopes but is not limited to those devices.
摘要:
A semiconductor sensor device includes a substrate, a non-suitable seed layer located above the substrate, at least one electrode located above the non-suitable seed layer, and a porous sensing layer supported directly by the non-suitable seed layer and in electrical communication with the at least one electrode, the porous sensing layer defining a plurality of grain boundaries formed by spaced-apart nucleation on the non-suitable seed layer using atomic layer deposition.
摘要:
A semiconductor sensor system, in particular a bolometer, includes a substrate, an electrode supported by the substrate, an absorber spaced apart from the substrate, a voltage source, and a current source. The electrode can include a mirror, or the system may include a mirror separate from the electrode. Radiation absorption efficiency of the absorber is based on a minimum gap distance between the absorber and mirror. The current source applies a DC current across the absorber structure to produce a signal indicative of radiation absorbed by the absorber structure. The voltage source powers the electrode to produce a modulated electrostatic field acting on the absorber to modulate the minimum gap distance. The electrostatic field includes a DC component to adjust the absorption efficiency, and an AC component that cyclically drives the absorber to negatively interfere with noise in the signal.
摘要:
A method for fabricating a semiconductor device includes patterning a sacrificial layer on a substrate to define a bolometer, with trenches being formed in the sacrificial layer to define anchors for the bolometer, the trenches extending through the sacrificial layer and exposing conductive elements at the bottom of the trenches. A thin titanium nitride layer is then deposited on the sacrificial layer and within the trenches. The titanium nitride layer is configured to form a structural support for the bolometer and to provide an electrical connection to the conductive elements on the substrate.