Abstract:
A laser for generating an output wavelength of approximately 193.4 nm includes a fundamental laser, an optical parametric generator, a fourth harmonic generator, and a frequency mixing module. The optical parametric generator, which is coupled to the fundamental laser, can generate a down-converted signal. The fourth harmonic generator, which may be coupled to the optical parametric generator or the fundamental laser, can generate a fourth harmonic. The frequency mixing module, which is coupled to the optical parametric generator and the fourth harmonic generator, can generate a laser output at a frequency equal to a sum of the fourth harmonic and twice a frequency of the down-converted signal.
Abstract:
The present invention includes a fundamental laser light source configured to generate fundamental wavelength laser light, a first nonlinear optical crystal configured to generate first alternate wavelength light; a second nonlinear optical crystal configured to generate second alternate wavelength light; a dual wavelength Brewster angle waveplate configured to rotate a polarization of the first alternate wavelength light relative to the second alternate wavelength light such that the first and second alternate wavelength light have the same polarization; a set of Brewster angle wavefront processing optics configured to condition the first and second alternate wavelengths of light; a harmonic separator configured to separate the first alternate wavelength light from the second alternate wavelength light; and a Brewster angle output window configured to transmit the first or second alternate wavelengths of light from the interior of a laser frequency conversion system to the exterior of the laser frequency conversion system.
Abstract:
The present invention includes a fundamental laser light source configured to generate fundamental wavelength laser light, an optical crystal configured to receive fundamental laser light from the fundamental laser light source, the optical crystal configured to generate alternate wavelength light by frequency converting a portion of the received fundamental laser light to alternate wavelength light, an auxiliary light source configured to generate auxiliary wavelength light, the auxiliary wavelength light having a wavelength different from the fundamental wavelength laser light and the alternate wavelength light, the fundamental laser light source and the auxiliary light source oriented such that the fundamental laser light copropagates with the auxiliary light through a surface of the optical crystal, and a detector configured to detect at least one of fundamental wavelength laser light scattered by the optical crystal, alternate wavelength light scattered by the optical crystal, or auxiliary light scattered by the optical crystal.
Abstract:
Disclosed is a method and apparatus for using far field scattered and diffracted light (412) to determine whether a collection of topological features on a surface (408), (e.g. a semiconductor wafer) conforms to an expected condition or quality. This determination is made by comparing the far field diffraction pattern of a surface under consideration with a corresponding diffraction pattern (a 'baseline'). If the baseline diffraction pattern and far field diffraction pattern varies by more than a prescribed amount or in characteristic ways, it is inferred that the surface (408) features are defective. The method may be implemented as a die-to-die comparison of far field diffraction patterns of two dies on a semiconductor wafer. The portion of the far field scattered and diffracted light (412) sensitive to a relevant condition or quality can also be reimaged to obtain an improved signal-to-noise ratio.
Abstract:
A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.