摘要:
Provided is a method in which the rate of growth is not lowered even when a cut SiC seed crystal is used in performing MSE process. A SiC seed crystal that is used as a seed crystal in metastable solvent epitaxy process (MSE process) is heated under Si atmosphere and the surface of the SiC seed crystal is etched to remove a work-affected layer that was formed by cutting. Work-affected layers generated on SiC seed crystals are known to inhibit growth during MSE process, and therefore removing the work-affected layers can prevent lowering of the rate of growth.
摘要:
Provided are a susceptor that, in forming a thin film on a wafer, can reduce impurities or the like adhering to the wafer and a method for manufacturing the same. A susceptor includes a base material (10) with a recess (11), a tantalum carbide layer (22) formed directly on a bottom surface (11a) and a side surface (11b) of the recess (11), and a silicon carbide layer (20) formed on a surface of the base material (10) except for the recess (11).
摘要:
The cost of liquid phase epitaxial growth of a monocrystalline silicon carbide is reduced. A feed material 11 is such that when a surface layer thereof containing a polycrystalline silicon carbide with a 3C crystal polymorph is subjected to X-ray diffraction, a diffraction peak corresponding to a (111) crystal plane and a diffraction peak other than the diffraction peak corresponding to the (111) crystal plane are observed as diffraction peaks corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph. A seed material 12 is such that when a surface layer thereof containing a polycrystalline silicon carbide with a 3C crystal polymorph is subjected to X-ray diffraction, a first-order diffraction peak corresponding to a (111) crystal plane is observed as a diffraction peak corresponding to the polycrystalline silicon carbide with a 3C crystal polymorph but no other first-order diffraction peak having a diffraction intensity of 10% or more of the diffraction intensity of the first-order diffraction peak corresponding to the (111) crystal plane is observed.
摘要:
In a method for manufacturing a device fabrication wafer 43, an SiC epitaxial wafer 42 that is an SiC wafer 40 having a monocrystalline SiC epitaxial layer 41 formed thereon is subjected to a basal plane dislocation density reduction step of reducing the density of basal plane dislocations existing in the epitaxial layer of the SiC epitaxial wafer 42, to thereby manufacture the device fabrication wafer 43 for use to fabricate a semiconductor device. In the basal plane dislocation density reduction step, the SiC epitaxial wafer 42 is heated under Si vapor pressure for a predetermined time necessary to reduce the density of basal plane dislocations, without formation of a cap layer on the SiC epitaxial wafer 42, so that the density of basal plane dislocations is reduced with suppression of surface roughening.
摘要:
Provided is a method for controlling the rate of etching of a SiC substrate based on a composition of a storing container. The etching method of the present invention is for etching the SiC substrate by heating the SiC substrate under Si vapor pressure, in a state where the SiC substrate is stored in a crucible. The crucible is formed of a tantalum metal, and has a tantalum carbide layer provided on an internal space side of the tantalum metal, and a tantalum silicide layer provided on the side further toward the internal space side than the tantalum carbide layer. The rate of etching of the SiC substrate is controlled based on difference in a composition of the tantalum silicide layer.
摘要:
Provided is a method in which the rate of growth is not lowered even when a cut SiC seed crystal is used in performing MSE process. A SiC seed crystal that is used as a seed crystal in metastable solvent epitaxy process (MSE process) is heated under Si atmosphere and the surface of the SiC seed crystal is etched to remove a work-affected layer that was formed by cutting. Work-affected layers generated on SiC seed crystals are known to inhibit growth during MSE process, and therefore removing the work-affected layers can prevent lowering of the rate of growth.
摘要:
The present application aims to provide a surface treatment method that is able to accurately control the rate of etching a single crystal SiC substrate and thereby enables correct understanding of the amount of etching. In the surface treatment method, the single crystal SiC substrate is etched by a heat treatment performed under Si vapor pressure. At a time of the etching, inert gas pressure in an atmosphere around the single crystal SiC substrate is adjusted to control the rate of etching. Accordingly, correct understanding of the amount of etching is obtained.
摘要:
To provide a technique capable of improving performance and reliability of a semiconductor device. An n - -type epitaxial layer (12) is formed on an n-type semiconductor substrate (11), and a p + -type body region (14), n + -type current spreading regions (16, 17), and a trench TR are formed in the n - -type epitaxial layer (12). A bottom surface B1 of the trench TR is located in the p + -type body region (14), a side surface S1 of the trench TR is in contact with the n + -type current spreading region (17), and a side surface S2 of the trench TR is in contact with the n + -type current spreading region (16). Here, a ratio of silicon is higher than a ratio of carbon in an upper surface T1 of the r - -type epitaxial layer (12), and the bottom surface B1, the side surface S1, and the side surface S2 of the trench. Furthermore, an angle θ1 at which the upper surface T1 of the n - -type epitaxial layer (12) is inclined with respect to the side surface S1 is smaller than an angle θ2 at which the upper surface T1 of the n - -type epitaxial layer (12) is inclined with respect to the side surface S2.