Abstract:
Nitrogen-doped MgO insulating layers exhibit voltage controlled resistance states, e.g., a high resistance and a low resistance state. Patterned nano-devices on the 100 nm scale show highly reproducible switching characteristics. The voltage levels at which such devices are switched between the two resistance levels can be systematically lowered by increasing the nitrogen concentration. Similarly, the resistance of the high resistance state can be varied by varying the nitrogen concentration, and decreases by orders of magnitude by varying the nitrogen concentrations by a few percent. On the other hand, the resistance of the low resistance state is nearly insensitive to the nitrogen doping level. The resistance of single Mg50O50-xNx layer devices can be varied over a wide range by limiting the current that can be passed during the SET process. Associated data storage devices can be constructed.
Abstract:
Nitrogen-doped MgO insulating layers exhibit voltage controlled resistance states, e.g., a high resistance and a low resistance state. Patterned nano-devices on the 100 nm scale show highly reproducible switching characteristics. The voltage levels at which such devices are switched between the two resistance levels can be systematically lowered by increasing the nitrogen concentration. Similarly, the resistance of the high resistance state can be varied by varying the nitrogen concentration, and decreases by orders of magnitude by varying the nitrogen concentrations by a few percent. On the other hand, the resistance of the low resistance state is nearly insensitive to the nitrogen doping level. The resistance of single Mg50O50-xNx layer devices can be varied over a wide range by limiting the current that can be passed during the SET process. Associated data storage devices can be constructed.
Abstract:
The present invention discloses organometallic complexes with transition metal elements and their application in fabrication of a variety of light-emitting devices. The mentioned organometallic complexes can serve as emitting material or dopant for blue phosphorescent organic light-emitting devices with excellent performance. The mentioned organometallic complexes have a general formula as the following: Wherein M represents a transition metal element, and Q1 and Q2 respectively represent an atomic group forming a nitrogen-containing heterocyclic ring as a five member ring, a six member ring, or a seven member ring.
Abstract:
The present invention discloses organometallic complexes with transition metal elements and their application in fabrication of a variety of light-emitting devices. The mentioned organometallic complexes can serve as emitting material or dopant for blue phosphorescent organic light-emitting devices with excellent performance. The mentioned organometallic complexes have a general formula as the following: Wherein M represents a transition metal element, and Q1 and Q2 respectively represent an atomic group forming a nitrogen-containing heterocyclic ring as a five member ring, a six member ring, or a seven member ring.
Abstract:
A fabrication method of a magnetoresistance multi-layer is provided. The method includes forming a multi-layer with at least an antiferromagnetic layer and performing an ion irradiation process to the multi-layer to transform a disordered structure of the antiferromagnetic layer to an ordered structure. Accordingly, the process time can be reduced and the interdiffusion in the multi-layer can be prevented.
Abstract:
A magnetic sensor configured to reside in proximity to a recording medium during use having a high spin polarization reference layer stack above AFM layers. The reference layer stack comprises a first boron-free ferromagnetic layer above the AFM coupling layer; a magnetic coupling layer on and in contact with the first boron-free ferromagnetic layer; a second ferromagnetic layer comprising boron deposited on and contact with the magnetic coupling layer; and a boron-free third ferromagnetic layer on and in contact the second ferromagnetic layer. A barrier layer is deposited on and in contact with the boron-free third ferromagnetic layer. In one aspect of the invention, the magnetic coupling layer may comprise at least one of Ta, Ti, or Hf. A process for providing the magnetic sensor is also provided.
Abstract:
A phosphorescent metal complex may include at least one metallic central atom M; and at least one ligand coordinated by the metallic central atom, wherein one ligand is bidentate with two uncharged coordination sites and comprises at least one carbene unit coordinated directly to the metal atom.
Abstract:
A fast bit allocation algorithm for audio coding is disclosed. A virtual Huffman codebook model is referred in a trellis-based optimization approach to obtain a set of optimized scale factors, and then the set of optimized scale factors is referred in a trellis-based optimization approach to obtain a set of optimized Huffman codebooks. Therefore, the present invention can significantly reduce the amount of computation for the bit allocation. Further, according to the experimental data, the present invention can keep almost the same compression efficiency as the prior art JTB optimization. Hence, the present invention is more suitable for practical applications.
Abstract:
A fast bit allocation algorithm for audio coding is disclosed. A virtual Huffman codebook model is referred in a trellis-based optimization approach to obtain a set of optimized scale factors, and then the set of optimized scale factors is referred in a trellis-based optimization approach to obtain a set of optimized Huffman codebooks. Therefore, the present invention can significantly reduce the amount of computation for the bit allocation. Further, according to the experimental data, the present invention can keep almost the same compression efficiency as the prior art JTB optimization. Hence, the present invention is more suitable for practical applications.
Abstract:
A magnetic sensor is configured to reside in proximity to a recording medium during use. The sensor includes a magnetic top shield and a magnetic bottom shield. A top sensor stack is under the magnetic top shield and includes magnetic sensing layers. A bottom sensor stack is between the magnetic bottom shield and the top sensor stack. The bottom sensor stack includes a magnetic seed stack above the bottom shield, an insertion stack above the magnetic seed stack, and an antiferromagnetic (AFM) layer on and in contact with the insertion stack. A pinned layer is above the AFM layer. An AFM coupling layer is above the pinned layer. In some aspects the insertion stack may include at least one of Ti, Hf, Zr, and Ta. In some aspect, the insertion stack includes a layer of elemental Ti. In other aspects, the insertion stack includes multilayer structures.