Abstract:
A method, apparatus and probe for examining tissue for the presence of target cells, particularly cancerous cells, by subjecting the tissue to be examined to a contrast agent containing small particles of a physical element conjugated with a biological carrier selectively bindable to the target cells. Energy pulses are applied to the examined tissue. The changes in impedance and/or optical characteristics of the examined tissue produced by the applied energy pulses are detected and utilized for determining the presence of the target cells in the examined tissue. In a described preferred embodiment, the applied energy pulses include laser pulses, and the physical element conjugated with a biological carrier is a light-sensitive semiconductor having an impedance which substantially decreases in the presence of light. The same probe used for detecting the targeted cells may also be used for destroying the cells so targeted.
Abstract:
The present invention relates to a device for tissue-characterization, designed for effective sensor-to-tissue contact. The device includes an element, having a rigid surface of a linear cross-section, on which at least one sensor is arranged, and a mechanism for applying a force to a soft tissue, the line of force being at an acute angle with the rigid surface, for stretching or stretching and pushing the soft tissue against the rigid surface, thus achieving effective contact between the tissue and the at least one sensor. In consequence, the accuracy of the sensing is improved. In accordance with another embodiment, a plurality of sensors is employed, arranged along a curved element, for providing three-dimensional information regarding the tissue, for example, by small-scale computerized tomography.
Abstract:
A mapping system (200) including: (a) at least one external marker (210,212,214,216) adapted for positioning outside a target (520) to define a target context; (b) at least one target marker (230) adapted for positioning with the target; (c) a data acquisition tool (221) configured to provide position coordinates for at least one data point (220) at the target (520); and (d) a registration module (300) adapted to output position coordinates of said at least one data point relative to at least a portion of the target context.
Abstract:
The present invention relates to probes, systems, and methods for tissue characterization by its dielectric properties, wherein a physical feature of the probe is designed to define and delimit a tissue volume, at a tissue edge, where characterization takes place. Thus, the probe for tissue-edge characterization comprises: a first inner conductor, which comprises: proximal and distal ends, with respect to a tissue edge, along an x-axis; a first sharp edge, inherently associated with the proximal end; at least one feature, issuing from the first inner conductor, substantially at the proximal end, for forming at least one additional sharp edge, operative to enhance localized electrical fringe fields in the tissue, within a generally predefined tissue volume, at the tissue edge, the tissue volume being generally defined by physical parameters associated with the at least one feature; and a dielectric material, which encloses the conductor, in the y-z planes.
Abstract:
A sensor for tissue characterization is provided, comprising: a resonator, configured to be placed proximally to an edge of a tissue for characterization, without penetrating the tissue, the resonator comprising a conductive structure associated with a diameter-equivalent dimension D, in a plane substantially parallel with the edge, and with a feature size d; and at least one conductive lead, for providing communication with an external system, wherein the resonator is configured to resonate at a frequency which corresponds to a free-air wavelength range of between about lambda and about 40 lambda, wherein lambda is at least about ten times the diameter-equivalent D, and wherein upon receiving a signal in the range of between about lambda and about 40 lambda, the sensor is configured to induce electric and magnetic fields, in a near zone, in the tissue, the near zone having a diameter of about D, so that the tissue in the near zone effectively functions as part of the resonator, influencing its resonating values, and so the tissue in the near zone is thereby characterized by its electromagnetic properties, by the resonating response of the resonator.
Abstract:
A measurement device is presented being configured to be connectable to an analyzer unit (comprising a network analyzer). The measurement device comprises a measuring unit and a calibration and control unit connected to and integral with the measuring unit. The calibration and control unit is configured to enable connection of the measuring unit to the analyzer unit. The calibration and control unit comprises a number of terminals of known RF reflection coefficients respectively and comprises a memory utility carrying recorded data indicative of said RF reflection coefficients and recorded data indicative of RF transfer coefficients of the calibration and control unit. This configuration enables calculation of the RF response of the measuring unit while remaining integral with the calibration and control unit.
Abstract:
A sensor for tissue characterization is provided, comprising: a resonator, configured to be placed proximally to an edge of a tissue for characterization, without penetrating the tissue, the resonator comprising a conductive structure associated with a diameter-equivalent dimension D, in a plane substantially parallel with the edge, and with a feature size d; and at least one conductive lead, for providing communication with an external system, wherein the resonator is configured to resonate at a frequency which corresponds to a free-air wavelength range of between about lambda and about 40 lambda, wherein lambda is at least about ten times the diameter-equivalent D, and wherein upon receiving a signal in the range of between about lambda and about 40 lambda, the sensor is configured to induce electric and magnetic fields, in a near zone, in the tissue, the near zone having a diameter of about D, so that the tissue in the near zone effectively functions as part of the resonator, influencing its resonating values, and so the tissue in the near zone is thereby characterized by its electromagnetic properties, by the resonating response of the resonator.
Abstract:
A probe, method and system for examining tissue in order to differentiate it from other tissue according to the dielectric properties of the examined tissue are provided. The probe includes an inner conductor, having a plurality of sharp, thin, conductive spikes, at a proximal end with respect to a tissue for examination, the plurality of sharp, thin, conductive spikes being operative to enhance the electrical fringe fields, where interaction with the tissue for examination occurs. The method includes: applying the probe to the tissue to be examined, such that the probe generates an electrical fringe field in the zone of the examined tissue and produces a reflected pulse therefrom with negligible radiation penetrating into the tissue itself; detecting the reflected electrical pulse; and comparing electrical characteristics of the reflected electrical pulse with respect to the applied electrical pulse to provide an indication of the dielectric properties of the examined tissue.
Abstract:
A medical device including a tissue characterization probe having an elongated carrier for carrying an array of tissue characterization sensors arranged in a spaced-apart relationship at least along an axis of said carrier within at least a distal portion thereof, such that progression of the probe through a tissue mass provides for locating and determining a dimension of an abnormal tissue specimen inside said tissue mass based on characterization signals from the sensors in the array. The elongated carrier has two integral portions including said distal portion and a hollow portion extending between a proximal end of the carrier and said distal portion. The carrier is configured for passing a predetermined treatment tool through the hollow portion thereof and enabling at least a part of the treatment tool to project from the hollow portion and extend along the distal portion.
Abstract:
An integrated tool is provided, having a tissue-type sensor, for determining the tissue type at a near zone volume of a tissue surface, and a distance-measuring sensor, for determining the distance to an interface with another tissue type, for (i) confirming an existence of a clean margin of healthy tissue around a malignant tumor, which is being removed, and (ii) determining the depth of the clean margin. The integrated tool may further include a position tracking device and an incision instrument. The soft tissue may be held within a fixed frame, while the tumor is being removed. Additionally a method for malignant tumor removal is provided, comprising, fixing the soft tissue within a frame, performing imaging with the hand-held, integrated tool, from a plurality of locations and orientations around the soft tissue, reconstructing a three-dimensional image of the soft tissue and the tumor within, defining a desired clean margin on the reconstructed image, calculating a recommended incision path, displaying the recommended path on the reconstructed image, and cutting the tissue while determining its type, at the near zone volume of the incision surface. The method may further include continuously imaging with the cutting, continuously correcting the reconstructed image and the recommended incision path, and continuously determining the tissue type, at the near zone volume of the incision surface.