Abstract:
The invention provides a catalyst and a method for making the catalyst. The catalyst comprises a porous carbon composite impregnated with a salt. The catalyst comprises a porous carbon composite impregnated with a salt.
Abstract:
Disclosed herein are asymmetric multilayer carbon molecular sieve (“CMS”) hollow fiber membranes and processes for preparing the membranes. The processes include simultaneously extruding a core dope containing a polymer and suitable nanoparticles, a sheath dope, and a bore fluid, followed by pyrolysis of the extruded fiber.
Abstract:
In described embodiments, the present invention includes a magnesium-based composite material formed from a plurality of α-phase magnesium grains; and a β-alloy phase comprising magnesium and nano-diamond and/or and phosphate containing nanoparticles, the β-alloy phase surrounding each of the plurality of magnesium grains. A method of manufacturing a composite material is also disclosed.
Abstract:
A method of refurbishing a gas turbine engine rotor is disclosed and includes an initial step of inspecting a rotor for defects such as cracks. A strain is then generated around any detected cracks in the rotor to create enhanced plasticized zones about the detected defects that delay defect propagation. Strain is generated by rotating the rotor at speeds greater than operational speeds to induce the desired strain and delay the propagation of defects.
Abstract:
A transcatheter prosthetic heart valve includes a stent frame and a leaflet material. The stent frame includes a top portion and a bottom portion. The leaflet material includes a lower portion attached to the stent frame and an upper portion that includes leaflets capable of moving between an open configuration and a closed configuration. At least a portion of the leaflet material weaves through the stent frame. The transcatheter prosthetic heart valve also includes one or more reinforcement components coupled to the stent frame and/or to the leaflet material to enhance performance of the transcatheter heart valve.
Abstract:
In described embodiments, the present invention includes a magnesium-based composite material formed from a plurality of α-phase magnesium grains; and a β-alloy phase comprising magnesium and nano-diamond and/or and phosphate containing nanoparticles, the β-alloy phase surrounding each of the plurality of magnesium grains. A method of manufacturing a composite material is also disclosed.
Abstract:
The invention provides a catalyst and a method for making the catalyst. The catalyst comprises a porous carbon composite impregnated with a salt. The catalyst comprises a porous carbon composite impregnated with a salt.
Abstract:
A 3D microelectrode device includes a flexible substrate containing poly-dimethyl siloxane (PDMS). The device may be fabricated in a miniature form factor suitable for attachment to a small organ such as a lateral gastrocnemius muscle of a live rat. In addition to providing a miniaturized, conformable attachment, the device provides an anchoring action via one or more microelectrodes, each having an insertable tip particularly shaped to provide the anchoring action. Furthermore, a base portion of each of the microelectrodes is embedded inside conductive poly-dimethyl siloxane (cPDMS). The cPDMS is contained in a pad that is coupled to a conductive track embedded in the flexible substrate. Embedding of the base portion inside the cPDMS material not only allows the microelectrode to bend in various directions, but also provides good electrical conductivity while eliminating the need for attachment processes using solder or epoxy adhesives.
Abstract:
A method of refurbishing a gas turbine engine rotor is disclosed and includes an initial step of inspecting a rotor for defects such as cracks. A strain is then generated around any detected cracks in the rotor to create enhanced plasticized zones about the detected defects that delay defect propagation. Strain is generated by rotating the rotor at speeds greater than operational speeds to induce the desired strain and delay the propagation of defects.
Abstract:
The invention provides a method of making a electrocatalyst from waste tires. The method comprises the steps of providing rubber pieces; optionally contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the rubber to produce tire-derived carbon composite comprising carbon black, wherein the pyrolyzing comprises heating to at least 200° C.-2400° C.; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with an alkali anion compound to provide activated tire-derived carbon supports; and loading the activated carbon-based supports with platinum cubes. In another embodiment, the tire-derived carbon composite is activated by annealing in a carbon dioxide atmosphere.