摘要:
An isolation structure comprising a substrate is provided. A trench is in the substrate. A sidewall of the trench has a first inclined surface and a second inclined surface. The first inclined surface is located on the second inclined surface. The slope of the first inclined surface is different from the slope of the second inclined surface. A length of the first inclined surface is greater than 15 nanometers.
摘要:
An isolation structure comprising a substrate is provided. A trench is in the substrate. A sidewall of the trench has a first inclined surface and a second inclined surface. The first inclined surface is located on the second inclined surface. The slope of the first inclined surface is different from the slope of the second inclined surface. A length of the first inclined surface is greater than 15 nanometers.
摘要:
A method of fabricating metal film stacks is described that reduces or eliminates adverse effects of photolithographic misalignments. A bottom critical dimension is increased by removal of a bottom titanium nitride barrier.
摘要:
A method of fabricating metal film stacks is described that reduces or eliminates adverse effects of photolithographic misalignments. A bottom critical dimension is increased by removal of a bottom titanium nitride barrier.
摘要:
A method for forming a dielectric is provided. The method includes providing a substrate having a silicon-containing semiconductor layer within a process chamber. The process chamber is capable of ionizing a process precursor to a plasma comprising an oxygen-containing element and a fluorocarbon-containing element. A surface portion of the silicon-containing material is oxidized by using the plasma to convert the surface portion into an oxidized dielectric material.
摘要:
A patterning method is provided. First, a substrate having an objective material layer thereon is provided. Thereafter, a mask layer is formed on the objective material layer. Afterwards, a patterned layer is formed over the mask layer, wherein a material of the patterned layer includes a metal-containing substance. Then, the mask layer is patterned to form a patterned mask layer. Further, the objective material layer is patterned, using the patterned mask layer as a mask.
摘要:
An apparatus for forming a dielectric layer includes a process chamber configured for disposing a substrate therein, a gas inlet for delivering a mixture gas to the process chamber, and an RF generator for producing a plasma from the mixture gas. The plasma includes an oxygen-containing element and a fluorocarbon-containing element. The apparatus also has a heating element configured for maintaining the chamber temperature at a desired process temperature, for example, at 800° C. or lower, and a connector to a vacuum pump for maintaining a process pressure. The apparatus is configured for using the plasma to convert a surface portion of the substrate into an oxidized dielectric material.
摘要:
A patterning method is provided. First, a substrate having an objective material layer thereon is provided. Thereafter, a mask layer is formed on the objective material layer. Afterwards, a patterned layer is formed over the mask layer, wherein a material of the patterned layer includes a metal-containing substance. Then, the mask layer is patterned to form a patterned mask layer. Further, the objective material layer is patterned, using the patterned mask layer as a mask.
摘要:
An isolation structure comprising a substrate is provided. A trench is in the substrate. A sidewall of the trench has a first inclined surface and a second inclined surface. The first inclined surface is located on the second inclined surface. The slope of the first inclined surface is different from the slope of the second inclined surface. A length of the first inclined surface is greater than 15 nanometers.
摘要:
An isolation structure comprising a substrate is provided. A trench is in the substrate. A sidewall of the trench has a first inclined surface and a second inclined surface. The first inclined surface is located on the second inclined surface. The slope of the first inclined surface is different from the slope of the second inclined surface. A length of the first inclined surface is greater than 15 nanometers.