Abstract:
A hydrosilylation process is used to prepare a polyorganosiloxane having clustered functional groups at the polyorganosiloxane chain terminals. The ingredients used in the process include a) a polyorganosiloxane having an average of at least 2 aliphatically unsaturated organic groups per molecule, b) a polyorganohydrogensiloxane having an average of 4 to 15 silicon atoms per molecule and at least 4 silicon bonded hydrogen atoms for each aliphatically unsaturated organic group in ingredient a), c) a reactive species having, per molecule at least 1 aliphatically unsaturated organic group and 1 or more curable groups; and d) a hydrosilylation catalyst. The resulting clustered functional polyorganosiloxane is useful in a curable silicone composition for electronics applications.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A process for reducing Ag electromigration in electronic circuitry includes the step of treating the electronic circuitry with an electromigration resistant composition. This process is useful in fabricating electronic devices having electronic circuitry that is close together, such as resistors, capacitors, and displays, e.g., a plasma display panel (PDP) or a liquid crystal display (LCD).
Abstract:
Curable compositions contain (i) a free radical polymerizable organosilicon monomer, oligomer or polymer; (ii) an organoborane amine complex; optionally (iii) an amine reactive compound having amine reactive groups; and optionally (iv) a component capable of generating a gas when mixed with a compound bearing active hydrogen and a catalyst. The curable compositions can be used as a rubber, tape, adhesive, foam, pressure sensitive adhesive, protective coating, thin film, thermoplastic monolithic molded part, thermosetting monolithic molded part, sealant, gasket, seal, or o-ring, die attachment adhesive, lid sealant, encapsulant, potting compound, or conformal coating. The compositions can also be used in composite articles of manufacture such as integrally bonded device including electrical and electronic connectors and scuba diving masks, in which substrates are coated or bonded together with the composition and cured.
Abstract:
A method comprising heating in the presence of a catalyst, a mixture comprising (i) a reaction product obtained by mixing in the presence of a platinum group metal-containing catalyst at least one organohydrogensilicon compound containing at least one silicon-bonded hydrogen atom per molecule and at least one compound having at least one aliphatic unsaturation; (ii) at least one endblocker, and optionally (iii) at least one organosiloxane chosen from a hydrolyzate or a cyclosiloxane, so to cause polymerization of components (i), (ii), and optionally (iii) to form branched polymers.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
Filled silicone composition, in situ preparation and use thereof are provided. The composition comprises a mixture of (A) an in situ-prepared treated silica, (B) an in situ-prepared (siloxane-alkylene)-endblocked polydiorganosiloxane, (c) a cure catalyst and (D) a crosslinker. Moreover, the composition can be used as adhesive, coating and sealant.
Abstract:
A polymer cures by both radiation and moisture curing mechanisms. The polymer is prepared by hydrosilylation. The polymer is useful in adhesive compositions. The polymer includes units of formulae (I), (R22Si02/2)b, (R2Si03/2)c, (Si04/2)d, (R1)f, and (R23SiO1/2)g, where each R1 is independently an oxygen atom or a divalent hydrocarbon group; each R1 is independently divalent hydrocarbon group; each R2 is independently a monovalent organic group that is free of terminal aliphatic unsaturation each X is independently a monovalent hydrolyzable group; each J is independently a monovalent epoxy functional organic group; subscript a has a value of 1 or more; subscript b has a value of 0 or more; subscript c has a value of 0 or more; subscript d has a value of 0 or more; subscript e has a value of 1 or more; subscript f has a value of 0 or more; subscript g has a value of 0 or more; subscript s is 1, 2, or 3; and subscript t is 1, 2, or 3.
Abstract:
A voltage transformation circuit comprising a first input, a second input, a first output, first and second impedances and a current mirror having master and slave terminals, wherein the first impedance is connected between the first input and the master terminal of the current mirror, the second impedance is connected between the second input and the slave terminal of the current mirror, and the first output is connected to the slave terminal of the current mirror.