Abstract:
Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
Abstract:
Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
Abstract:
Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
Abstract:
Anti-reflective coatings and methods for forming these anti-reflective coatings are disclosed that have a polymer chemistry and optical characteristics suitable for suppressing the light that reflects off a circuit substrate during a photo-lithographic process. These anti-reflective coatings include a phenolic polymer material and an epoxide-containing polymer material that can be combined in a select proportion to form a thermally curable polymeric anti-reflective coating. The select proportions of the combined materials tailors the optical characteristic of the anti-reflective coating to attenuate energy about a select range of wavelengths.
Abstract:
Methods, devices, and compositions related to organic solar cells, sensors, and other photon processing devices are disclosed. In some aspects, an organic semiconducting composition is formed with nano-sized features, e.g., a layer conforming to a shape exhibiting nano-sized tapered features. Such structures can be formulated as an organic n-type and/or an organic p-type layer incorporated in a device that exhibits enhanced conductor mobility relative to conventional structures such as planar layered formed organic semiconductors. The nanofeatures can be formed on an exciton blocking layer (“EBL”) surface, with an organic semiconducting layer deposited thereon to conform with the EBL's surface features. A variety of material possibilities are disclosed, as well as a number of different configurations. Such organic structures can be used to form flexible solar cells in a roll-out format.
Abstract:
Methods for the preparation of multilayered resists include exposure of the a first layer to radiation followed by exposure to an oxidizing agent. The oxidizing agent alters the surface characteristics of the first resist layer such that it is rendered more hydrophilic than the original resist layer. A second layer of resist is then applied to the oxidized surface of the first resist layer and exposed to radiation. This process can be repeated for thousands of coating layers, thereby permitting stereolithographic patterning of parts and construction of micromachines. A final treatment with a dissolution solution will dissolve unwanted resist material. Dependent upon the type of resist material used in the multilayered resist, the dissolution solution can remove the radiation exposed areas, e.g., a positive resist, or remove unexposed areas, e.g., a negative resist.
Abstract:
Ion mobility spectrometer systems and methods of using such systems are disclosed. The systems and methods can combine two different ionization techniques (e.g., proton affinity ionization and electron transfer ionization) to provide enhanced detection sensitivity and/or detection selectivity of certain target compounds.
Abstract:
Methods and devices for detecting the presence of a NO forming material (e.g., a material that can form, or is, a nitrogen monoxide molecule) are disclosed based on detection of fluorescence exhibited by NO molecules in a first vibrationally excited state of a ground electronic state. Such excited NO molecules can be formed, for example, when small amounts of explosives are photodissociated. By inducing fluorescence of the material, a distinct signature of the explosive can be detected. Such techniques can be performed quickly and with a significant standoff distance, which can add to the invention's utility. In another aspection of the invention, methods and apparatus for generating electromagnetic radiation are disclosed. Such methods and apparatus can be used in conjunction with any detection method disclosed herein.
Abstract:
A method for collecting and concentrating trace chemicals for subsequent analysis by virtually any type of chemical detector includes providing directed radiation to a sample, or a portion of a sample. An apparatus can include a sampling body for providing radiation.
Abstract:
Methods for the preparation of multilayered resists are described. To efficiently pattern large contiguous areas rapidly, a procedure has been developed using spot-size modulation of the focused laser beam to more efficiently pattern interior portions. Critical portions at the perimeter are patterned at high resolutions. The spot-size is progressively increased towards the interior allowing a controlled transition to coarser spot-sizes without impacting the exposure dose in critical portions. Patterning times are significantly reduced since in effect shells are patterned. An algorithm is defined to subdivide a layer into different zones, determine the appropriate focused spot-sizes used for each zone, and define the laser scan trace within a zone to enable efficient patterning of broad areas in positive tone resists.