Abstract:
The present invention provides GA targeting compounds which comprise GA targeting agent-linker conjugates linked to a combining site of an antibody. Various uses of the compounds are provided, including methods to prevent or treat diabetes or diabetes-related conditions.
Abstract:
Described are novel compounds of the Formula (I), their derivatives, analogs, tautomeric forms, regioisomers, stereoisomers, polymorphs, solvates, intermediates, pharmaceutically acceptable salts, pharmaceutical compositions, metabolites and prodrugs thereof. These compounds are effective in lowering blood glucose, serum insulin, free fatty acids, cholesterol, triglyceride levels; treatment of obesity, inflammation, autoimmune diseases such as multiple sclerosis, rheumatoid arthritis; treatment and/or prophylaxis of type II diabetes. These compounds are more particularly dipeptidyl peptidase (DPP IV) inhibitors.
Abstract:
The present invention relates to compounds of formula (I): (I) their pharmacologically acceptable salts, or solvates and hydrates, and their prodrugs, respectively, and to pharmaceutical compositions containing the same as active ingredient. These novel compounds are especially useful in the treatment of cancer.
Abstract:
Disclosed are polynucleotide constructs having a strand linked to a moiety carrying one or more auxiliary moieties. Also disclosed are polynucleotide constructs interrupted with a sugar analogue, and polynucleotide constructs with stereochemical{circumflex over ( )}enriched phosphorothioates. The polynucleotide constructs may be provided as hybridized polynucleotide constructs. Also featured are methods of delivery a polynucleotide construct to a cell and methods of reducing the expression of a protein in a cell by contacting the cell with the disclosed polynucleotide construct or hybridized polynucleotide construct.
Abstract:
The invention features a hybridized polynucleotide construct including a passenger strand, a guide strand loadable into a RISC complex, and one or more auxiliary moieties. At least one of the auxiliary moieties is non-bioreversibly linked to an internucleoside phosphate or phosphorothioate in the passenger strand. The invention further features methods of delivery a polynucleotide construct to a cell and methods of reducing the expression of a protein in a cell. The methods typically involve contacting the cell with the hybridized polynucleotide construct.
Abstract:
The invention features a hybridized polynucleotide construct containing a passenger strand, a guide strand loadable into a RISC complex, and (i) a 3′-terminal or an internucleotide non-bioreversible group in the guide strand; or (ii) a 5′-terminal, a 3′-terminal, or an internucleotide non-bioreversible group in the passenger strand, and a 5′-terminal, a 3′-terminal, or an internucleotide disulfide bioreversible group in the guide strand or the passenger strand. The invention also features methods of delivering a polynucleotide to a cell using the hybridized polynucleotide construct. The invention further features methods of reducing the expression of a polypeptide in a cell using the hybridized polynucleotide construct.
Abstract:
The invention features polynucleotide constructs containing one or more components (i) containing a disulfide linkage, where each of the one or more components is attached to an internucleotide bridging group or a terminal group of the polynucleotide construct, and each of the one or more components (i) contains one or more bulky groups proximal to the disulfide group. The invention also features polynucleotide constructs containing one or more components (i) containing a disulfide linkage, where each of the one or more components (i) is attached to an internucleotide bridging group or a terminal group of the polynucleotide construct, and each of the one or more components (i) contains at least 4 atoms in a chain between the disulfide linkage and the phosphorus atom of the internucleotide bridging group or the terminal group; and where the chain does not contain a phosphate, an amide, an ester, or an alkenylene. The invention also features methods of delivering a polynucleotide to a cell using the polynucleotide constructs of the invention.
Abstract:
Described are novel compounds of the Formula (I), their derivatives, analogs, tautomeric forms, regioisomers, stereoisomers, polymorphs, solvates, intermediates, pharmaceutically acceptable salts, pharmaceutical compositions, metabolites and prodrugs thereof. These compounds are effective in lowering blood glucose, serum insulin, free fatty acids, cholesterol, triglyceride levels; treatment of obesity, inflammation, autoimmune diseases such as multiple sclerosis, rheumatoid arthritis; treatment and/or prophylaxis of type II diabetes. These compounds are more particularly dipeptidyl peptidase (DPP IV) inhibitors.