Abstract:
Embodiments of a valve assembly for a process chamber having improved seal performance are provided herein. In some embodiments, a valve assembly for a process chamber includes a housing having an opening disposed in a wall thereof and through which a substrate may be transferred; a door movably coupled to the housing in a plane substantially parallel to the wall of the housing for selectively sealing the opening; a compressible sealing member disposed at least partly between an upper surface of the door and a corresponding surface of the housing for forming a seal therebetween by compression of the compressible sealing member in a direction substantially perpendicular to the wall when the door is in a closed position; and a mechanism for restricting the exposure of the compressible sealing member to an environment on a process chamber side of the housing.
Abstract:
A semiconductor processing system is described. The system includes a processing chamber having an interior capable of holding an internal chamber pressure below ambient atmospheric pressure. The system also includes a pumping system coupled to the chamber and adapted to remove material from the processing chamber. The system further includes a substrate support pedestal, where the substrate support pedestal is rigidly coupled to a substrate support shaft extending through a wall of the processing chamber. A bracket located outside the processing chamber is provided which is rigidly and sometimes rotatably coupled to the substrate support shaft. A motor coupled to the bracket can be actuated to vertically translate the substrate support pedestal, shaft and bracket from a first position to a second position closer to a processing plate. A piston mounted on an end of the bracket provides a counter-balancing force to a tilting force, where the tilting force is generated by a change in the internal chamber pressure and causes a deflection in the position of the bracket and the substrate support. The counter-balancing force reduces the deflection of the bracket and the substrate support.
Abstract:
Embodiments of the present invention provide an apparatus for constraining and supporting the lift pins to prevent or minimize lateral movement of the lift pins that causes substrate hand-off problems and associated degradation in substrate processing characteristics and results. In one embodiment, a lift pin assembly for manipulating a substrate above a support surface of a substrate support comprises a plurality of lift pins movable between an up position and a down position. The lift pins include top ends and bottom ends. The top ends are configured to be lifted above the support surface of the substrate support to contact a bottom surface of the substrate in the up position. The top ends are configured to be positioned at or below the support surface of the substrate support in the down position. A lift pin connecting member is attached to the plurality of lift pins at attachment locations at or near the bottom ends of the lift pins to maintain fixed relative distances between the lift pins at the attachment locations and to move with the lift pins between the up position and the down position.
Abstract:
Techniques for a door system for sealing an opening between two chambers in a semiconductor processing system are described. A sealing member seals the opening when a door is in a closed position. To selectively open and close the opening, an actuator moves the door. A valve actuator switch provides a first or second pressure to the actuator depending on the pressure inside a first chamber. In one embodiment, a sensor monitors the pressure inside the first chamber.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
Abstract:
A valve assembly comprises a valve body having an interior valve seat and a plurality of adapter ports. A non-metallic sealing material provides a vacuum seal between mating surfaces of adjacent vacuum components, and direct physical contact between mating surfaces ensures good thermal conduction within the valve assembly.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
Abstract:
Techniques for a door system for sealing an opening between two chambers in a semiconductor processing system are described. A sealing member seals the opening when a door is in a closed position. To selectively open and close the opening, an actuator moves the door. A valve actuator switch provides a first or second pressure to the actuator depending on the pressure inside a first chamber. In one embodiment, a sensor monitors the pressure inside the first chamber.
Abstract:
Embodiments of a manifold assembly are provided herein. In some embodiments, a manifold assembly includes a first manifold having a first inlet, for coupling to a high temperature fluid source, and a first outlet; a second manifold having a second inlet and a second outlet; and a connector portion coupling the first outlet of the first manifold to the second inlet of the second manifold, the connector portion includes a polymer block; and a thermal isolator disposed between the polymer block and the first manifold.
Abstract:
Embodiments of a valve assembly for a process chamber having improved seal performance are provided herein. In some embodiments, a valve assembly for a process chamber includes a housing having an opening disposed in a wall thereof and through which a substrate may be transferred; a door movably coupled to the housing in a plane substantially parallel to the wall of the housing for selectively sealing the opening; a compressible sealing member disposed at least partly between an upper surface of the door and a corresponding surface of the housing for forming a seal therebetween by compression of the compressible sealing member in a direction substantially perpendicular to the wall when the door is in a closed position; and a mechanism for restricting the exposure of the compressible sealing member to an environment on a process chamber side of the housing.