Abstract:
Passive and active scanning for extended range wireless networking. The choice between legacy and extended range signaling can depend on one or more factors. For passive scanning, an electronic device may transmit a combination of legacy beacons and extended range beacons for network discovery by receiving electronic devices. For active scanning, an electronic device may transmit extended range probe requests in addition to legacy probe requests to discover all of the access points within its transmission range. Responses to probe requests can use extended range, legacy, single user, and/or multi user protocols.
Abstract:
Disclosed herein are system, method, and computer program product embodiments for selectively decoding a multicast subframe in a multi-user frame for a wireless communications protocol. Embodiments include transmitting a request frame including a multicast group address for a multicast group to an access point (AP). The AP can determine a multicast identifier for the multicast group based on the multicast group address in the request frame. The AP can also transmit a response frame including the determined multicast identifier to a station (STA). The STA can receive a multi-user frame containing a multicast subframe from the AP. The STA can determine whether the multicast subframe is destined for the STA based on the determined multicast identifier and a multicast identifier stored in a preamble of the multi-user frame. The STA can determine whether to decode the multicast subframe based on the determination of whether the multicast subframe is destined for the STA.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
Apparatus and methods are disclosed for performing delayed hybrid automatic repeat request (HARQ) communications in the downlink (DL) to reduce power consumption for a user equipment (UE) during a connected mode discontinuous reception (C-DRX) cycle. An enhanced NodeB can be configured to monitor a physical uplink control channel (PUCCH) for DL HARQ information to determine when the PUCCH contains a negative acknowledgement (NACK) message, and in response to determining that the PUCCH contains a NACK message, the eNodeB can wait until a next C-DRX ON duration to transmit a HARQ DL retransmission. The eNodeB can also determine whether or not to bundle the HARQ DL retransmission in consecutive transmission time intervals, based on a signal to interference plus noise ratio (SINR) associated with the UE.
Abstract:
Apparatus and methods for dynamically adjusting radio frequency circuitry in a wireless communication device are disclosed. The wireless communication device can receive downlink communication using carrier aggregation through a primary component carrier and a secondary component carrier. When carrier aggregation is not enabled, the wireless communication device adjusts the radio frequency circuitry based on default values. When carrier aggregation is enabled, the wireless communication device evaluates radio frequency conditions for the primary and secondary component carriers and adjusts the radio frequency circuitry based on whether uplink and/or downlink communication is power constrained. When uplink communication is power constrained, the wireless communication device adjusts the radio frequency circuitry for optimal performance via the primary component carrier, and when uplink communication is not power constrained, the wireless communication device adjusts the radio frequency circuitry for optimal performance via the combination of the primary and secondary component carriers used for carrier aggregation.
Abstract:
This disclosure relates to aligning semi-persistent scheduling (SPS) uplink and downlink communications. In one embodiment, a cellular base station may select SPS parameters for a wireless device. The SPS parameters may include a subframe offset, a downlink SPS interval, and an uplink SPS interval. The subframe offset may indicate a subframe at which both an initial downlink subframe and an initial uplink subframe are scheduled. An indication of the SPS parameters may be transmitted to the UE. The wireless device and the cellular base station may perform uplink and downlink communication according to the SPS parameters.
Abstract:
A single chip mobile wireless device capable of receiving and transmitting over one wireless network at a time maintains registration on two wireless communication networks that each use different communication protocols in parallel. Periodically, the mobile wireless device tunes one or more receivers from a first wireless network to a second wireless network in order to listen for paging messages addressed to the mobile wireless device from the second wireless network. The first wireless network suspends allocation of radio resources to the mobile wireless device based on receipt of a suspension message from the mobile wireless device, or based on knowledge of a paging cycle for mobile wireless device in the second wireless network, or based on detection of an out of synchronization condition with the mobile wireless device.
Abstract:
Apparatus and methods for performing reduced hybrid automatic repeat request (HARQ) operations for a user equipment (UE) during a data communications session, e.g., for voice over LTE (VoLTE) communications. The UE can initially inform the network, via an enhanced NodeB (eNodeB), that the UE is capable of performing advanced HARQ functions. The eNodeB can further evaluate various network conditions to determine when reduced HARQ operations should be employed. When network conditions allow, the eNodeB can transmit an RRC message to the UE, including reduced HARQ timeline configuration information. Thereafter, the UE and the eNodeB can collaborate to institute the reduced HARQ timeline to schedule an application data retransmission during the data communications session. The reduced HARQ operations can be performed in conjunction with various semi-persistent scheduling (SPS) and connected mode discontinuous reception (C-DRX) operations, to further conserve UE device resources.
Abstract:
Various embodiments are disclosed of a method and apparatus for fast communication recovery in wireless mobile devices arranged to perform dual network radio resource management. In one embodiment, a wireless mobile device includes a transceiver configured to communicate with each of first and second networks. After establishing and maintaining a link with the first network, the wireless mobile device may tune a transceiver to the second network to monitor for traffic, subsequently tuning back to the first network. After turning the transceiver back to the first network, the wireless mobile device may perform one or more attempts to restore the link to the first network. The number of attempts to restore the link is dependent upon an amount of time the transceiver is tuned to the second network.
Abstract:
Apparatus and methods for performing reduced hybrid automatic repeat request (HARQ) operations for a user equipment (UE) during a data communications session, e.g., for voice over LTE (VoLTE) communications. The UE can initially inform the network, via an enhanced NodeB (eNodeB), that the UE is capable of performing advanced HARQ functions. The eNodeB can further evaluate various network conditions to determine when reduced HARQ operations should be employed. When network conditions allow, the eNodeB can transmit an RRC message to the UE, including reduced HARQ timeline configuration information. Thereafter, the UE and the eNodeB can collaborate to institute the reduced HARQ timeline to schedule an application data retransmission during the data communications session. The reduced HARQ operations can be performed in conjunction with various semi-persistent scheduling (SPS) and connected mode discontinuous reception (C-DRX) operations, to further conserve UE device resources.