Abstract:
In some embodiments, a method of processing a substrate disposed within a processing volume of a hot wire chemical vapor deposition (HWCVD) process chamber, includes: (a) providing a silicon containing precursor gas into the processing volume, the silicon containing precursor gas is provided into the processing volume from an inlet located a first distance above a surface of the substrate; (b) breaking hydrogen-silicon bonds within molecules of the silicon containing precursor via introduction of hydrogen radicals to the processing volume to deposit a flowable silicon containing layer atop the substrate, wherein the hydrogen radicals are formed by flowing a hydrogen containing gas over a plurality of wires disposed within the processing volume above the substrate and the inlet.
Abstract:
In some embodiments, a method of processing a substrate disposed within a processing volume of a hot wire chemical vapor deposition (HWCVD) process chamber, includes: (a) providing a carbon containing precursor gas into the processing volume, the carbon containing precursor gas being provided into the processing volume from an inlet located a first distance above a surface of the substrate; (b) breaking hydrogen-carbon bonds within molecules of the carbon containing precursor via introduction of hydrogen radicals to the processing volume to deposit a flowable carbon layer atop the substrate, wherein the hydrogen radicals are formed by flowing a hydrogen containing gas over a plurality of filaments disposed within the processing volume above the substrate and the inlet.
Abstract:
Embodiments described herein provide for a method of forming an etch selective hardmask. An amorphous carbon hardmask is implanted with various dopants to increase the hardness and density of the hardmask. The ion implantation of the amorphous carbon hardmask also maintains or reduces the internal stress of the hardmask. The etch selective hardmask generally provides for improved patterning in advanced NAND and DRAM devices.