摘要:
A cost effective and simple method of patterning interconnect structures is provided in which spun-on materials are used as the hard mask. The use of spun-on materials for the hard mask ensures that the process is carried out in a single tool and it permits the use of a single curing step which is not typically employed in patterning processes wherein CVD hard masks are employed. The effective dielectric constant of the resultant structure is not significantly increased since the use of spin coating allows for selection of a polish stop layer (formed on a surface of a low-k dielectric) that has substantially the same dielectric constant as the underlying dielectric. In the present invention, the hard mask employed includes at least two spun-on dielectric materials that have different etch rates.
摘要:
A spin-on cap useful as a post-CMP cap for Cu interconnect structures is provided. The inventive spin-on cap includes a low-k dielectric (on the order of 3.5 or less) and at least one additive. The at least one additive employed in the present invention is capable of binding Cu ions, and is soluble in the spun-on low-k dielectric. The spin-on cap of the present invention may further include a spun-on low-k (on the order of 3.5 or less) reactive-ion etch (RIE) stop layer. Spin-on caps containing a bilayer of low-dielectric plus at least additive and low-k RIE stop layer are preferred. It is noted that the inventive spin-on cap of the present invention does not significantly increase the effective dielectric constant of the interconnect structure and does not add additional cost to the fabrication of the interconnect structure since a single deposition tool, i.e., spin coating tool, is employed. Moreover, because of the presence of the additive in the spin-on cap, Cu migration is substantially minimized.
摘要:
An interconnect structure including a patterned multilayer of spun-on dielectrics as well as methods for manufacturing the same are provided. The interconnect structure includes a patterned multilayer of spun-on dielectrics formed on a surface of a substrate. The patterned multilayer of spun-on dielectrics is composed of a bottom low-k dielectric, a buried etch stop layer, and a top low-k dielectric, wherein the bottom and top low-k dielectrics have a first composition, the said buried etch stop layer has a second composition which is different from the first composition and the buried etch stop layer is covalently bonded to said top and bottom low-k dielectrics. The interconnect structure further includes a polish stop layer formed on the patterned multilayer of spun-on dielectrics; and metal conductive regions formed within the patterned multilayer of spun-on dielectrics. Covalent bonding is achieved by employing an organosilane having functional groups that are capable of bonding with the top and bottom dielectric layers.
摘要:
A low-k dielectric metal conductor interconnect structure having no micro-trenches present therein and a method of forming such a structure are provided. Specifically, the above structure is achieved by providing an interconnect structure which includes at least a multilayer of dielectric materials which are applied sequentially in a single spin apply tool and then cured in a single step and a plurality of patterned metal conductors within the multilayer of spun-on dielectrics. The control over the conductor resistance is obtained using a buried etch stop layer having a second atomic composition located between the line and via dielectric layers of porous low-k dielectrics having a first atomic composition. The inventive interconnect structure also includes a hard mask which assists in forming the interconnect structure of the dual damascene-type. The first and second composition are selected to obtain etch selectivity of at least 10 to 1 or higher, and are selected from specific groups of porous low-k organic or inorganic materials with specific atomic compositions and other discoverable quantities.
摘要:
A low-k dielectric metal conductor interconnect structure having no micro-trenches present therein and a method of forming such a structure are provided. Specifically, the above structure is achieved by providing an interconnect structure which includes at least a multilayer of dielectric materials which are applied sequentially in a single spin apply tool and then cured in a single step and a plurality of patterned metal conductors within the multilayer of spun-on dielectrics. The control over the conductor resistance is obtained using a buried etch stop layer having a second atomic composition located between the line and via dielectric layers of porous low-k dielectrics having a first atomic composition. The inventive interconnect structure also includes a hard mask which assists in forming the interconnect structure of the dual damascene-type. The first and second composition are selected to obtain etch selectivity of at least 10 to 1 or higher, and are selected from specific groups of porous low-k organic or inorganic materials with specific atomic compositions and other discoverable quantities.
摘要:
A low-k dielectric metal conductor interconnect structure having no micro-trenches present therein and a method of forming such a structure are provided. Specifically, the above structure is achieved by providing an interconnect structure which includes at least a multilayer of dielectric materials which are applied sequentially in a single spin apply tool and then cured in a single step and a plurality of patterned metal conductors within the multilayer of spun-on dielectrics. The control over the conductor resistance is obtained using a buried etch stop layer having a second atomic composition located between the line and via dielectric layers of porous low-k dielectrics having a first atomic composition. The inventive interconnect structure also includes a hard mask which assists in forming the interconnect structure of the dual damascene-type. The first and second composition are selected to obtain etch selectivity of at least 10 to 1 or higher, and are selected from specific groups of porous low-k organic or inorganic materials with specific atomic compositions and other discoverable quantities.
摘要:
A metal wiring plus low-k dielectric interconnect structure of the dual damascene-type is provided wherein the conductive metal lines and vias are built into a hybrid low-k dielectric which includes two spun-on dielectrics that have different atomic compositions and at least one of the two spun-on dielectrics is porous. The two spun-on dielectrics used in forming the inventive hybrid low-k dielectric each have a dielectric constant of about 2.6 or less, preferably each dielectric of the hybrid structure has a k of from about 1.2 to about 2.2. By utilizing the inventive hybrid low-k dielectric excellent control over metal line resistance (trench depth) is obtained, without no added cost. This is achieved without the use of a buried etch stop layer, which if present, would be formed between the two spun-on dielectrics. Moreover, the spun-on dielectrics of the hybrid low-k dielectric have distinctly different atomic compositions enabling control over the conductor resistance using the bottom spun-on dielectric (i.e., via dielectric) as an inherent etch stop layer for the upper spun-on dielectric (i.e., line dielectric).
摘要:
Novel semiconductor devices containing a discontinuous cap layer and possessing a relatively low dielectric constant are provide herein. The novel semiconductor devices includes at least a substrate, a first dielectric layer applied on at least a portion of the substrate, a first set of openings formed through the dielectric layer to expose the surface of the substrate so that a conductive material deposited within and filling the openings provides a first set of electrical contact conductive elements and a discontinuous layer of cap material covering at least the top of the conductive elements to provide a first set of discontinuous cap elements. Methods for forming the semiconductor devices are also provided.
摘要:
A porous, low-k dielectric film that has good mechanical properties as well as a method of fabricating the film and the use of the film as a dielectric layer between metal wiring features are provided. The porous, low-k dielectric film includes a first phase of monodispersed pores having a diameter of from about 1 to about 10 nm that are substantially uniformly spaced apart and are essentially located on sites of a three-dimensional periodic lattice; and a second phase which is solid surrounding the first phase. Specifically, the second phase of the film includes (i) an ordered element that is composed of nanoparticles having a diameter of from about 1 to about 10 nm that are substantially uniformly spaced apart and are essentially arranged on sites of a three-dimensional periodic lattice, and (ii) a disordered element comprised of a dielectric material having a dielectric constant of about 2.8 or less.
摘要:
A metal plus low dielectric constant (low-k) interconnect structure is provided for a semiconductor device wherein adjacent regions in a surface separated by a dielectric have dimensions in width and spacing in the sub 250 nanometer range, and in which reduced lateral leakage current between adjacent metal lines, and a lower effective dielectric constant than a conventional structure, is achieved by the positioning of a differentiating or mask member that is applied for the protection of the dielectric in subsequent processing operations, at a position about 2-5 nanometers below a, to be planarized, surface where there will be a lower electric field. The invention is particularly useful in the damascene type device structure in the art wherein adjacent conductors extend from a substrate through an interlevel dielectric material, connections are made in a trench, a diffusion barrier liner is provided in the interlevel dielectric material and masking is employed to protect the dielectric material between conductors during processing operations.