Abstract:
A video encoding system in which pixel data is decomposed into frequency bands prior to encoding. The frequency bands for a slice of a frame may be buffered so that complexity statistics may be calculated across the frequency bands prior to encoding. The statistics may then be used by a rate control component in determining quantization parameters for the frequency bands for modulating the rate in the encoder for the current slice. The quantization parameters for the frequency bands may be calculated jointly to optimize the quality of the displayed frames after decoder reconstruction and wavelet synthesis on a receiving device. Information about one or more previously processed frames may be used in combination with the statistics for a current slice in determining the quantization parameters for the current slice.
Abstract:
In one implementation, a method includes receiving a warped image representing simulated reality (SR) content (e.g., to be displayed in a display space), the warped image having a plurality of pixels at respective locations uniformly spaced in a grid pattern in a warped space, wherein the plurality of pixels are respectively associated with a plurality of respective pixel values and a plurality of respective scaling factors indicating a plurality of respective resolutions at a plurality of respective locations of the SR content (e.g., in the display space). The method includes processing the warped image in the warped space based on the plurality of respective scaling factors to generate a processed warped image and transmitting the processed warped image.
Abstract:
In one implementation, a method of encoding an image is performed at a device including one or more processors and non-transitory memory. The method includes determining a category of a spatial portion of an image based on a relation between a plurality of thresholds associated with a plurality of quantization scaling parameters and a bit rate of the spatial portion of the image at the plurality of quantization scaling parameters. The method includes quantizing the spatial portion of the image based on the categorization.
Abstract:
A method includes obtaining first pass-through image data characterized by a first pose. The method includes obtaining respective pixel characterization vectors for pixels in the first pass-through image data. The method includes identifying a feature of an object within the first pass-through image data in accordance with a determination that pixel characterization vectors for the feature satisfy a feature confidence threshold. The method includes displaying the first pass-through image data and an AR display marker that corresponds to the feature. The method includes obtaining second pass-through image data characterized by a second pose. The method includes transforming the AR display marker to a position associated with the second pose in order to track the feature. The method includes displaying the second pass-through image data and maintaining display of the AR display marker that corresponds to the feature of the object based on the transformation.
Abstract:
A video encoding system in which pixel data is decomposed into frequency bands prior to encoding. The frequency bands for a slice of a frame may be buffered so that complexity statistics may be calculated across the frequency bands prior to encoding. The statistics may then be used by a rate control component in determining quantization parameters for the frequency bands for modulating the rate in the encoder for the current slice. The quantization parameters for the frequency bands may be calculated jointly to optimize the quality of the displayed frames after decoder reconstruction and wavelet synthesis on a receiving device. Information about one or more previously processed frames may be used in combination with the statistics for a current slice in determining the quantization parameters for the current slice.
Abstract:
A mixed reality system that includes a device and a base station that communicate via a wireless connection The device may include sensors that collect information about the user's environment and about the user. The information collected by the sensors may be transmitted to the base station via the wireless connection. The base station renders frames or slices based at least in part on the sensor information received from the device, encodes the frames or slices, and transmits the compressed frames or slices to the device for decoding and display. The base station may provide more computing power than conventional stand-alone systems, and the wireless connection does not tether the device to the base station as in conventional tethered systems. The system may implement methods and apparatus to maintain a target frame rate through the wireless link and to minimize latency in frame rendering, transmittal, and display.
Abstract:
Adaptive video processing for a target display panel may be implemented in or by a server/encoding pipeline. The adaptive video processing methods may obtain and take into account video content and display panel-specific information including display characteristics and environmental conditions (e.g., ambient lighting and viewer location) when processing and encoding video content to be streamed to the target display panel in an ambient setting or environment. The server-side adaptive video processing methods may use this information to adjust one or more video processing functions as applied to the video data to generate video content in the color gamut and dynamic range of the target display panel that is adapted to the display panel characteristics and ambient viewing conditions.
Abstract:
In one implementation, a method includes receiving a warped image representing simulated reality (SR) content (e.g., to be displayed in a display space), the warped image having a plurality of pixels at respective locations uniformly spaced in a grid pattern in a warped space, wherein the plurality of pixels are respectively associated with a plurality of respective pixel values and a plurality of respective scaling factors indicating a plurality of respective resolutions at a plurality of respective locations of the SR content (e.g., in the display space). The method includes processing the warped image in the warped space based on the plurality of respective scaling factors to generate a processed warped image and transmitting the processed warped image.
Abstract:
Video coding systems and methods protect against banding artifacts in decoded image content. According to the method, a video coder may identify, from content of pixel blocks of a frame of video data, which pixel blocks are likely to exhibit banding artifacts from the video coding/decoding processes. The video coder may assemble regions of the frame that are likely to exhibit banding artifacts based on the identified pixel blocks' locations with respect to each other. The video coder may apply anti-banding processing to pixel blocks within one or more of the identified regions and, thereafter, may code the processed frame by a compression operation.
Abstract:
YCbCr image data may be dithered and converted into RGB data shown on a 8-bit or other bit display. Dither methods and image processors are provided which generate the banding artifact free image data during this process. Some methods and image processors may applying a stronger dither having a same mean with a larger variance to the image data before it is converted to RGB data. Others methods and image processors may calculate a quantization or encoding error and diffuse the calculated error among one or more neighboring pixel blocks.