Abstract:
An electronic device such as a head-mounted device may have a display that produces a display image. The head-mounted device may have an optical system that merges real-world images from real-world objects with display images. The optical system provides the real-world images and display images to an eye box for viewing by a user. The optical system may use time interleaving techniques and/or polarization effects to merge real-world and display images. Switchable devices such as polarization switches and tunable lenses may be controlled in synchronization with frames of display images. Geometrical phase lenses may be used that exhibit different lens powers to different polarizations of light.
Abstract:
An electronic device such as a head-mounted device may have a display that produces a display image. The head-mounted device may have an optical system that merges real-world images from real-world objects with display images. The optical system provides the real-world images and display images to an eye box for viewing by a user. The optical system may use time interleaving techniques and/or polarization effects to merge real-world and display images. Switchable devices such as polarization switches and tunable lenses may be controlled in synchronization with frames of display images. Geometrical phase lenses may be used that exhibit different lens powers to different polarizations of light.
Abstract:
A display may include an optical film to promote sunglass-friendly viewing of the display. Displays may include linear polarizers. For example, a liquid crystal display may have a linear polarizer above a liquid crystal layer, whereas an organic light-emitting diode display may have a linear polarizer that forms a portion of a circular polarizer to reduce reflections in the display. Displays that emit linearly polarized light may not be compatible with polarized sunglasses. To ensure an optimal user experience for users wearing sunglasses, displays may include sunglass-friendly optical films. A sunglass-friendly optical film may be a film formed from a birefringent material such as a polymer or liquid crystal. The sunglass-friendly optical film may have an optical axis that is at a 45° angle relative to the optical axis of the underlying linear polarizer. The sunglass-friendly optical film may be patterned to have reduced thickness regions.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be interposed between the color filter layer and the thin-film transistor layer. Column spacer structures may be used to maintain a desired gap for the liquid crystal layer between the color filter layer and the thin-film transistor layer. The column spacer structures may include column spacers having bases and opposing tips. The tips may penetrate into the liquid crystal layer and may bear against the thin-film transistor layer or aligned column spacer pads on the thin-film transistor layer. The color filter layer may have a glass substrate, a black matrix on the substrate, a color filter element layer on the black matrix, and an overcoat on the color filter element layer. Some or all of the column spacers may have bases that contact the black matrix layer.
Abstract:
Electronic equipment with displays may be provided. A first display may be mounted in a first housing and a second display may be mounted in a second housing that is adjacent to the first housing. The first housing may rotate relative to the second housing about a hinge axis. The first housing may be a lid and the second housing may be a base housing that is coupled to the lid by a hinge. A first display may be mounted in the first housing and a second display may be mounted in the second housing. Polarizer layers and other optical layers in the displays may be configured to provide a viewer with the ability to view images on the displays while wearing vertically polarized sunglasses and to suppress reflections of light emitted by the first display off of the second display.
Abstract:
A display may have a layer of liquid crystal material interposed between a color filter layer and a thin-film transistor layer. A ring of adhesive sealant may surround the liquid crystal layer. Columns spacers may extend between the color filter and thin-film transistor layers through the liquid crystal layer to help ensure that the color filter and thin-film transistor layers are appropriately spaced apart from each other. A ring-shaped polymer spacer may surround the ring of adhesive sealant and may help protect display structures form exposure to etchant that is used to treat the edges of glass layers in the display. The spacer may be formed from the same layer of material that forms the column spacers. A black masking layer may be formed on the underside of the color filter layer using techniques that prevent the formation of protruding edge portions.
Abstract:
An electronic device such as a head-mounted device may have a display that produces a display image. The head-mounted device may have an optical system that merges real-world images from real-world objects with display images. The optical system provides the real-world images and display images to an eye box for viewing by a user. The optical system may use time interleaving techniques and/or polarization effects to merge real-world and display images. Switchable devices such as polarization switches and tunable lenses may be controlled in synchronization with frames of display images. Geometrical phase lenses may be used that exhibit different lens powers to different polarizations of light.
Abstract:
A display may include an optical film to promote sunglass-friendly viewing of the display. Displays may include linear polarizers. For example, a liquid crystal display may have a linear polarizer above a liquid crystal layer, whereas an organic light-emitting diode display may have a linear polarizer that forms a portion of a circular polarizer to reduce reflections in the display. Displays that emit linearly polarized light may not be compatible with polarized sunglasses. To ensure an optimal user experience for users wearing sunglasses, displays may include sunglass-friendly optical films. A sunglass-friendly optical film may be a film formed from a birefringent material such as a polymer or liquid crystal. The sunglass-friendly optical film may have an optical axis that is at a 45° angle relative to the optical axis of the underlying linear polarizer. The sunglass-friendly optical film may be patterned to have reduced thickness regions.
Abstract:
Electronic equipment with displays may be provided. A first display may be mounted in a first housing and a second display may be mounted in a second housing that is adjacent to the first housing. The first housing may rotate relative to the second housing about a hinge axis. The first housing may be a lid and the second housing may be a base housing that is coupled to the lid by a hinge. A first display may be mounted in the first housing and a second display may be mounted in the second housing. Polarizer layers and other optical layers in the displays may be configured to provide a viewer with the ability to view images on the displays while wearing vertically polarized sunglasses and to suppress reflections of light emitted by the first display off of the second display.
Abstract:
An electronic device may have a display that provides image light to a waveguide. First and second liquid crystal lenses may be mounted to opposing surfaces of the waveguide. An coupler may couple the image light out of the waveguide through the first lens. The second lens may convey world light to the first lens. Control circuitry may control the first lens to apply a first optical power to the image light and the world light and may control the second lens to apply a second optical power to the world light that cancels out the first optical power. Each lens may include two layers of liquid crystal molecules having antiparallel pretilt angles. The pretilt angles and rubbing directions of the first lens may be antiparallel to corresponding pretilt angles and rubbing directions of the second lens about the waveguide.