Abstract:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
Abstract:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
Abstract:
Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures.
Abstract:
A structure and method are provided to inhibit degradation to the electron beam of a field emitter device by coating the field emitter tip with a substance or a compound. The substance or compound acts in the presence of outgassing to inhibit such degradation. In one embodiment, the substance or compound coating the field emitter tip is stable in the presence of outgassing. In another embodiment, the substance or compound decomposes at least one matter in the outgassing. In yet another embodiment, the substance or compound neutralizes at least one matter in the outgassing. In a further embodiment, the substance or compound brings about a catalysis in the presence of outgassing.
Abstract:
The invention encompasses a method of forming a dielectric material. A nitrogen-comprising layer is formed on at least some of the surface of a rugged polysilicon substrate to form a first portion of a dielectric material. After the nitrogen-comprising layer is formed, at least some of the substrate is subjected to dry oxidation with one or both of NO and N2O to form a second portion of the dielectric material. The invention also encompasses a method of forming a capacitor. A layer of rugged silicon is formed over a substrate, and a nitrogen-comprising layer is formed on the layer of rugged silicon. Some of the rugged silicon is exposed through the nitrogen-comprising layer. After the nitrogen-comprising layer is formed, at least some of the exposed rugged silicon is subjected to dry oxidation conditions with one or both of NO and N2O. Subsequently, a conductive material layer is formed over the nitrogen-comprising layer. Additionally, the invention encompasses a capacitor structure. The structure includes a first capacitor electrode comprising a rugged polysilicon layer, a nitrogen-comprising layer on the rugged polysilicon layer, and a second capacitor electrode. The nitrogen-comprising layer is between the first and second capacitor electrodes.
Abstract:
An emitter substructure and methods for manufacturing the substructure are described. A substrate has a p-region formed at a surface of the substrate. A n-tank is formed such that the p-region surrounds a periphery of the n-tank. An emitter is formed on and electrically coupled to the n-tank. A dielectric layer is formed on the substrate that includes an opening surrounding the emitter. An extraction grid is formed on the dielectric layer. The extraction grid includes an opening surrounding and in close proximity to a tip of the emitter. An insulating region is formed at a lower boundary of the n-tank. The insulating region electrically isolates the emitter and the n-tank along at least a portion of the lower boundary beneath the opening. The insulating region thus functions to displace a depletion region associated with a boundary between the p-region and the n-tank from an area that can be illuminated by photons traveling through the extraction grid or openings in the extraction grid. This reduces distortion in field emission displays.
Abstract:
A field emission display apparatus includes a plurality of emitters formed on a substrate. Each of the emitters includes a titanium silicide nitride outer layer so that the emitters are less susceptible to degradation. A dielectric layer is formed on the substrate and the emitters, and an opening is formed in the dielectric layer surrounding each of the emitters. A conductive extraction grid is formed on the dielectric layer substantially in a plane defined by the emitters, and includes an opening surrounding each of the emitters. A cathodoluminescent faceplate having a planar surface is disposed parallel to the substrate.
Abstract:
A field emission display apparatus includes a plurality of emitters formed on a substrate. Each of the emitters includes a titanium silicide nitride outer layer so that the emitters are less susceptible to degradation. A dielectric layer is formed on the substrate and the emitters, and an opening is formed in the dielectric layer surrounding each of the emitters. A conductive extraction grid is formed on the dielectric layer substantially in a plane defined by the emitters, and includes an opening surrounding each of the emitters. A cathodoluminescent faceplate having a planar surface is disposed parallel to the substrate.
Abstract:
CMOS devices and process for fabricating low voltage, high voltage, or both low voltage and high voltage CMOS devices are disclosed. According to the process, p-channel stops and source/drain regions of PMOS devices are implanted into a substrate in a single step. Further, gates for both NMOS and PMOS devices are doped with n-type dopant and NMOS gates are self-aligned.
Abstract:
An emitter substructure and methods for manufacturing the substructure are described. A substrate has a p-region formed at a surface of the substrate. A n-tank is formed such that the p-region surrounds a periphery of the n-tank. An emitter is formed on and electrically coupled to the n-tank. A dielectric layer is formed on the substrate that includes an opening surrounding the emitter. An extraction grid is formed on the dielectric layer. The extraction grid includes an opening surrounding and in close proximity to a tip of the emitter. An insulating region is formed at a lower boundary of the n-tank. The insulating region electrically isolates the emitter and the n-tank along at least a portion of the lower boundary beneath the opening. The insulating region thus functions to displace a depletion region associated with a boundary between the p-region and the n-tank from an area that can be illuminated by photons traveling through the extraction grid or openings in the extraction grid. This reduces distortion in field emission displays.