Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate and a four transistor storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
A high-voltage LDMOSFET includes a semiconductor substrate, in which a gate well is formed. A source well and a drain well are formed on either side of the gate well, and include insulating regions within them that do not reach the full depth. An insulating layer is disposed on the substrate, covering the gate well and a portion of the source well and the drain well. A conductive gate is disposed on the insulating layer. Biasing wells are formed adjacent the source well and the drain well. A deep well is formed in the substrate such that it communicates with the biasing wells and the gate well, while extending under the source well and the drain well, such as to avoid them. Biasing contacts at the top of the biasing wells bias the deep well, and therefore also the gate well.
Abstract:
A FET device for operation at high voltages includes a substrate, a first well and a second well within the substrate that are doped with implants of a first type and second type, respectively. The first and second wells define a p-n junction. A field oxide layer within the second well defines a first surface region to receive a drain contact. A third well is located at least partially in the first well, includes doped implants of the second type, and is adapted to receive a source contact. As such, the third well defines a channel between itself and the second well within the first well. A gate is disposed over the channel. At least a first portion of the gate is disposed over the p-n junction, and includes doped implants of the first type. A number of permutations are allowed for doping the remainder of the gate.
Abstract:
A high-voltage LDMOSFET includes a semiconductor substrate, in which a gate well is formed. A source well and a drain well are formed on either side of the gate well, and include insulating regions within them that do not reach the full depth. An insulating layer is disposed on the substrate, covering the gate well and a portion of the source well and the drain well. A conductive gate is disposed on the insulating layer. Biasing wells are formed adjacent the source well and the drain well. A deep well is formed in the substrate such that it communicates with the biasing wells and the gate well, while extending under the source well and the drain well, such as to avoid them. Biasing contacts at the top of the biasing wells bias the deep well, and therefore also the gate well.
Abstract:
A FET device for operation at high voltages includes a substrate, a first well and a second well within the substrate that are doped with implants of a first type and second type, respectively. The first and second wells define a p-n junction. A field oxide layer within the second well defines a first surface region to receive a drain contact. A third well is located at least partially in the first well, includes doped implants of the second type, and is adapted to receive a source contact. As such, the third well defines a channel between itself and the second well within the first well. A gate is disposed over the channel. At least a first portion of the gate is disposed over the p-n junction, and includes doped implants of the first type. A number of permutations are allowed for doping the remainder of the gate.
Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate, dual transistor, inverter storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
NVM arrays include rows and columns of NVM cells comprising a floating gate, dual transistor, inverter storage element. Supply voltage for selected storage elements is turned off during a programming and an erase mode. Isolation transistors for each NVM cell or for each row of NVM cells may be used to control the supply voltage.
Abstract:
A level shifter including a level shifter module configured to i) receive an input signal, wherein the input signal varies between a first level and a second level, ii) receive a first voltage supply signal and a second voltage supply signal, and iii) generate a latch control signal based on the input signal and one of the first voltage supply signal and the second voltage supply signal. The level shifter further includes a latch module configured to i) receive the latch control signal, ii) receive the second voltage supply signal and a third voltage supply signal, and iii) generate an output signal based on the latch control signal and one of the second voltage supply signal and the third voltage supply signal.
Abstract:
Memory cells and arrays have reduced bit line resistance. An element conductor is disposed on the top of the bit line to reduce the resistance of the bit line while maintaining a shallow bit line junction so that 200 Ohm/square or lower sheet resistances are achieved with the bit line junctions typically 20 nanometers or shallower while the doping levels in the junctions are below about 5×1019 atoms/cm3.
Abstract:
Nonvolatile memory cells and array are provided. The memory cell comprises a body, a source, a drain, and a charge storage region. The body comprises an n-type conductivity and is formed in a well of the n-type conductivity. The source and the drain have p-type conductivity and are formed in the well with a channel of the body defined therebetween. The charge storage region is disposed over and insulated from the channel by a channel insulator. Each cell further comprises a bias setting having a source voltage applied to the source, a well voltage applied to the well, and a drain voltage applied to the drain. A bias configuration for an erase operation of the memory cell is further provided, wherein the source voltage is sufficiently more negative with respect to the well voltage and is sufficiently more positive with respect to the drain voltage to inject hot holes onto the charge storage region. The cells can be arranged in row and column to form memory arrays and memory device.