摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to selectively attract ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
An in-situ ion sensor is disclosed for monitoring ion species in a plasma chamber. The ion sensor may comprise: a drift tube; an extractor electrode and a plurality of electrostatic lenses disposed at a first end of the drift tube, wherein the extractor electrode is biased to attract ions from a plasma in the plasma chamber, and wherein the plurality of electrostatic lenses cause at least one portion of the attracted ions to enter the drift tube and drift towards a second end of the drift tube within a limited divergence angle; an ion detector disposed at the second end of the drift tube, wherein the ion detector detects arrival times associated with the at least one portion of the attracted ions; and a housing for the extractor, the plurality of electrostatic lenses, the drift tube, and the ion detector, wherein the housing accommodates differential pumping between the ion sensor and the plasma chamber.
摘要:
A time-of-flight ion sensor for monitoring ion species in a plasma includes a housing. A drift tube is positioned in the housing. An extractor electrode is positioned in the housing at a first end of the drift tube so as to attract ions from the plasma. A plurality of electrodes is positioned at a first end of the drift tube proximate to the extractor electrode. The plurality of electrodes is biased so as to cause at least a portion of the attracted ions to enter the drift tube and to drift towards a second end of the drift tube. An ion detector is positioned proximate to the second end of the drift tube. The ion detector detects arrival times associated with the at least the portion of the attracted ions.
摘要:
A time-of-flight (TOF) ion sensor system for monitoring an angular distribution of ion species having an ion energy and incident on a substrate includes a drift tube wherein the ion sensor system is configured to vary an angle of the drift tube with respect to a plane of the substrate. The drift tube may have a first end configured to receive a pulse of ions from the ion species wherein heavier ions and lighter ions of the pulse of ions arrive in packets at a second end of the drift tube. An ion detector may be disposed at the second end of the ion sensor, wherein the ion detector is configured to detect the packets of ions derived from the pulse of ions and corresponding to respective different ion masses.
摘要:
A time-of-flight (TOF) ion sensor system for monitoring an angular distribution of ion species having an ion energy and incident on a substrate includes a drift tube wherein the ion sensor system is configured to vary an angle of the drift tube with respect to a plane of the substrate. The drift tube may have a first end configured to receive a pulse of ions from the ion species wherein heavier ions and lighter ions of the pulse of ions arrive in packets at a second end of the drift tube. An ion detector may be disposed at the second end of the ion sensor, wherein the ion detector is configured to detect the packets of ions derived from the pulse of ions and corresponding to respective different ion masses.
摘要:
An ion implantation apparatus including a first plasma chamber, a second plasma chamber and an extraction electrode disposed therebetween. The first and second plasma chambers configured to house respective plasmas in response to the introduction of a different feed gases therein. The extraction electrode is electrically isolated from the plasma chamber. An extraction voltage is applied to the first plasma chamber above a bias potential used to generate the plasma therein. The extraction voltage drives the plasma potential to accelerate the ions in the first plasma to a desired implant energy. The accelerated ions pass through an aperture in the extraction electrode and are directed toward a substrate housed within the second plasma chamber for implantation.
摘要:
A method and apparatuses for providing improved electrical contact to a semiconductor wafer during plasma processing applications are disclosed. In one embodiment, an apparatus includes a wafer platen for supporting the wafer; and a plurality of electrical contact elements, each of the plurality of electrical contact elements are configured to provide a path for supplying a bias voltage from a bias power supply to the wafer on the wafer platen. The plurality of electrical contact elements are also geometrically arranged such that at least one electrical contact element contacts an inner surface region (e.g., region between a center of wafer and a distance approximately half of the radius of the wafer) and at least one electrical contact element contacts an outer annular surface region (e.g., region between an outer edge of wafer and a distance approximately half of the radius of the wafer).
摘要:
A plasma processing apparatus includes a process chamber housing defining a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate plasma in the process chamber, and a biasing system. The biasing system is configured to bias the platen to attract ions from the plasma towards the workpiece during a first processing time interval and configured to bias the platen to repel ions from the platen towards interior surfaces of the process chamber housing during a cleaning time interval. The cleaning time interval is separate from the first processing time interval and occurring after the first processing time interval.