摘要:
Disclosed is a process for production of succinic acid, which comprises the step of reacting a bacterium which has been modified so as to increase the expression of a sucE1 gene or a product produced by any treatment of the bacterium with an organic raw material in a reaction solution containing a carbonate ion, a bicarbonate ion or carbon dioxide gas to thereby yield the desired succinic acid.
摘要:
Provided is a bacterium which is capable of producing an organic acid and is modified so as to have an enhanced 2-oxoglutarate dehydrogenase activity as compared with that of an unmodified strain. An organic acid such as succinic acid can be produced by culturing the bacterium.
摘要:
Provided is a bacterium which is capable of producing an organic acid and is modified so as to have an enhanced 2-oxoglutarate dehydrogenase activity as compared with that of an unmodified strain. An organic acid such as succinic acid can be produced by culturing the bacterium.
摘要:
Coryneform bacteria are described that have an ability to produce L-amino acids and are modified so that acetyl-CoA hydrolase activity is decreased. The bacteria are used to produce L-amino acids generated by a biosynthetic pathway in which pyruvic acid is an intermediate, such as L-glutamic acid, L-arginine, L-glutamine, L-proline, L-alanine, L-valine, and L-lysine.
摘要:
Coryneform bacteria are described that have an ability to produce L-amino acids and are modified so that acetyl-CoA hydrolase activity is decreased. The bacteria are used to produce L-amino acids generated by a biosynthetic pathway in which pyruvic acid is an intermediate, such as L-glutamic acid, L-arginine, L-glutamine, L-proline, L-alanine, L-valine, and L-lysine.
摘要:
Succinic acid is produced by allowing a bacterium modified to enhance fumarate reductase activity or cell preparation thereof to react with an organic raw material in a reaction solution containing one of a carbonate ion, a bicarbonate ion, and carbon dioxide gas to generate succinic acid. More preferably, succinic acid is produced by allowing a bacterium modified to enhance activities of fumarate reductase and pyruvate carboxylase and decrease lactate dehydrogenase activity or cell preparation thereof to react with an organic raw material in a reaction solution containing one of a carbonate ion, a bicarbonate ion, and carbon dioxide gas to generate succinic acid. Succinic acid is obtained by collecting the produced succinic acid.
摘要:
Succinic acid is produced by allowing a bacterium modified to enhance fumarate reductase activity or cell preparation thereof to react with an organic raw material in a reaction solution containing one of a carbonate ion, a bicarbonate ion, and carbon dioxide gas to generate succinic acid. More preferably, succinic acid is produced by allowing a bacterium modified to enhance activities of fumarate reductase and pyruvate carboxylase and decrease lactate dehydrogenase activity or cell preparation thereof to react with an organic raw material in a reaction solution containing one of a carbonate ion, a bicarbonate ion, and carbon dioxide gas to generate succinic acid. Succinic acid is obtained by collecting the produced succinic acid.
摘要:
There is provided an austenitic stainless steel for high-pressure hydrogen gas consisting, by mass percent, of C: 0.10% or less, Si: 1.0% or less, Mn: 3% or more to less than 7%, Cr: 15 to 30%, Ni: 10% or more to less than 17%, Al: 0.10% or less, N: 0.10 to 0.50%, and at least one kind of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%, the balance being Fe and impurities, wherein in the impurities, the P content is 0.050% or less and the S content is 0.050% or less, the tensile strength is 800 MPa or higher, the grain size number (ASTM E112) is No. 8 or higher, and alloy carbo-nitrides having a maximum diameter of 50 to 1000 nm are contained in the number of 0.4/μm2 or larger in cross section observation.
摘要:
There is provided a battery assembly wherein assembly can be facilitated by reducing the number of components to be assembled, by integrally fixing resin plates (52, 62) on the inside of metal plates (51, 61) of end plates (5, 6). A laminated battery body (3) is constituted by adjacently arranging battery holders (2) made of resin forming cooling passages (4) between a plurality of batteries (1) and holding such batteries (1) on both sides between other batteries (1). The metal plates (51, 61) and resin plates (52, 62) that are integrally fixed on the inside of these metal plates are provided on the outside of the batteries (1) at both ends of the laminated battery body (3). Thus, the batteries (1) are held by the resin plates (52, 62), and the end plates (5, 6) are respectively arranged to form the cooling passages (4) between these batteries (1) and the metal plates (51, 61). The laminated battery body (3) is fixed in a clamped manner by fixing means clamping these end plates (5, 6).