Abstract:
Provided is a method for manufacturing a conductive pillar capable of bonding a substrate and a bonding member with high bonding strength via a bonding layer without employing an electroplating method, and a method for manufacturing a bonded structure by employing this method. A method for manufacturing a conductive pillar 1 includes, in sequence, the steps of forming a resist layer 16 on a substrate 11 provided with an electrode pad 13, the resist layer 16 including an opening portion 16a on the electrode pad 13, forming a thin Cu film 17 by sputtering or evaporating Cu on a surface of the substrate 11 provided with the resist layer 16 including the opening portion 16a, filling the opening portion 16a with a fine particle copper paste 12c, and sintering the fine particle copper paste 12c by heating the substrate 11 filled with the fine particle copper paste 12c.
Abstract:
An electroplating method that is a conventional method has had a problem that it is difficult to manufacture fine pillars without being affected by an undercut. Furthermore, an electroless plating method has had a problem that it is difficult to manufacture pillars having the same shape without any void. The inventors have performed intensive investigations to solve the above problems and, as a result, have found that fine conductive pillars with a high aspect ratio can be readily manufactured on a substrate having an electrode section in such a manner that after a conductive paste containing metal micro-particles is applied in a reduced pressure state, the conductive paste is exposed to standard pressure. The present invention has a particular effect on the manufacture of a metal pillar that is a terminal for flip-chip mounting.
Abstract:
An object of the present invention is to provide an imprinting curable composition which includes a silicon-containing polymerizable compound such as polysiloxane, exhibits outstanding adhesion to a substrate and excellent demoldability from a fine pattern mold, and causes very little mold contamination. The object is attained by providing a photo-imprinting curable composition including a polymerizable compound (A) containing a silicon atom in the molecule, a photopolymerization initiator (B) and an additive (C), the additive (C) being a compound represented by the following formula (C1) or (C2): R1OC2H4OnX1 (C1) X2OC2H4OpC3H6OqC2H4OrX3 (C2) (In the formula (C1), R1 is a C12-30 alkyl group, X1 is a hydrogen atom or an acyl group, and n is an integer of 0 to 50. In the formula (C2), X2 and X3 are each independently a hydrogen atom or an acyl group, and p, q and r are each independently an integer of 1 to 50).
Abstract:
A problem of The present invention is to provide a curable composition capable of forming a resist which can be easily washed after curing and which has high dry etching resistance and excellent precision of fine pattern transfer, also provide a resist film and a laminate each containing the curable composition, and further provide a pattern forming method using the resist film. The problem of the present invention can be solved by providing a curable composition containing a multifunctional polymerizable monomer (A) which has two or more groups having a polymerizable group and has at least one group Q having a polymerizable group represented by formula (1) below, the amount of silicon atoms in an nonvolatile content being 10 wt % or more.
Abstract:
Provided is a curable resin composition for a dry-etching resist, the curable resin composition containing a polymer (A) having, in a side chain, a particular structure including an aromatic group having a vinyl group. The polymer (A) includes 80 to 100 wt % of the particular structure. In addition, provided are a dry-etching resist mask obtained by curing the curable composition for a dry-etching resist, and the dry-etching resist mask having a pattern formed by a nanoimprint method.
Abstract:
There is provided a curable composition for imprinting containing a polymerizable compound, in which (a) the concentration of a polymerizable group in the polymerizable compound is in the range of 4.3 mmol/g to 7.5 mmol/g, (b) a polymerizable compound X whose Ohnishi parameter is 3.5 or less and ring parameter is 0.35 or greater is contained in the range of 40% by mass to 95% by mass with respect to all the polymerizable compounds, (c) a polymerizable compound C having three or more polymerizable groups is further contained in the range of 5% by mass to 20% by mass with respect to all the polymerizable compounds, and (d) the viscosity of the composition being at 25° C. and in a state of not containing a solvent is in the range of 3 mPa·s to 8,000 mPa·s.
Abstract:
Provided is a method for manufacturing a conductive pillar capable of bonding a substrate and a bonding member with high bonding strength via a bonding layer without employing an electroplating method, and a method for manufacturing a bonded structure by employing this method. A method for manufacturing a conductive pillar 1 includes, in sequence, the steps of forming a resist layer 16 on a substrate 11 provided with an electrode pad 13, the resist layer 16 including an opening portion 16a on the electrode pad 13, forming a thin Cu film 17 by sputtering or evaporating Cu on a surface of the substrate 11 provided with the resist layer 16 including the opening portion 16a, filling the opening portion 16a with a fine particle copper paste 12c, and sintering the fine particle copper paste 12c by heating the substrate 11 filled with the fine particle copper paste 12c.
Abstract:
The known electrolytic plating method is disadvantageous in that it is difficult to form thin pillars without being influenced by undercuts. The electroless plating method is disadvantageous in that it is difficult to form pillars in the same shape without voids. As a solution to these, the electrically conductive paste according to the present invention for forming pillars is used to make pillars by filling. This helps prevent undercuts, and it is also intended to provide metal pillars in the same shape with good reproducibility. The inventors found that an electrically conductive paste that is very small fine metal particles and contains a particular percentage of fine metal particles is extraordinarily advantageous in forming pillars.
Abstract:
There is provided a curable composition for imprinting containing a polymerizable compound, in which (a) the concentration of a polymerizable group in the polymerizable compound is in the range of 4.3 mmol/g to 7.5 mmol/g, (b) a polymerizable compound X whose Ohnishi parameter is 3.5 or less and ring parameter is 0.35 or greater is contained in the range of 40% by mass to 95% by mass with respect to all the polymerizable compounds, (c) a polymerizable compound C having three or more polymerizable groups is further contained in the range of 5% by mass to 20% by mass with respect to all the polymerizable compounds, and (d) the viscosity of the composition being at 25° C. and in a state of not containing a solvent is in the range of 3 mPa·s to 8,000 mPa·s.
Abstract:
Provided is a curable resin composition for a dry-etching resist, the curable resin composition containing a polymer (A) having, in a side chain, a particular structure including an aromatic group having a vinyl group. The polymer (A) includes 80 to 100 wt % of the particular structure. In addition, provided are a dry-etching resist mask obtained by curing the curable composition for a dry-etching resist, and the dry-etching resist mask having a pattern formed by a nanoimprint method.