摘要:
A method for manufacturing an integrated circuit having a plurality of semiconductor devices including an n-type field effect transistor and a p-type field effect transistor on a semiconductor wafer by creating a spacer having a first width for the n-type field effect transistor and creating a spacer having a second width for the p-type field effect transistor, the first width being greater than the second width and depositing silicide material on the semiconductor wafer such that tensile mechanical stresses are formed within a channel of the n-type field effect transistor and compressive stresses are formed within a channel of the p-type field effect transistor.
摘要:
A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
摘要:
A process is provided for making a PFET and an NFET. Areas in a first semiconductor region adjacent to a gate stack are recessed. A lattice-mismatched semiconductor layer is grown in the recesses to apply a strain to the channel region of the PFET adjacent thereto. A layer of the first semiconductor material can be grown over the lattice-mismatched semiconductor layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
摘要:
A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
摘要:
A semiconductor device includes a semiconductor substrate having at least one gap, extending under a portion of the semiconductor substrate. A gate stack is on the semiconductor substrate. A strain layer is formed in at least a portion of the at least one gap. The strain layer is formed only under at least one of a source region and a drain region of the semiconductor device.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
A first aspect of the present invention is a method of forming an isolation structure including: (a) providing a semiconductor substrate; (b) forming a buried N-doped region in the substrate; (c) forming a vertical trench in the substrate, the trench extending into the N-doped region; (d) removing the N-doped region to form a lateral trench communicating with and extending perpendicular to the vertical trench; and (e) at least partially filling the lateral trench and filling the vertical trench with one or more insulating materials.
摘要:
A method for manufacturing a device including an n-type device and a p-type device. In an aspect of the invention, the method involves doping a portion of a semiconductor substrate and forming a gap in the semiconductor substrate by removing at least a portion of the doped portion of the semiconductor substrate. The method further involves growing a strain layer in at least a portion of the gap in the semiconductor substrate. For the n-type device, the strain layer is grown on at least a portion which is substantially directly under a channel of the n-type device. For the p-type device, the strain layer is grown on at least a portion which is substantially directly under a source region or drain region of the p-type device and not substantially under a channel of the p-type device.