摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
The present invention provides a complementary metal oxide semiconductor integration process whereby a plurality of silicided metal gates are fabricated atop a gate dielectric. Each silicided metal gate that is formed using the integration scheme of the present invention has the same silicide metal phase and substantially the same height, regardless of the dimension of the silicide metal gate. The present invention also provides various methods of forming a CMOS structure having silicided contacts in which the polySi gate heights are substantially the same across the entire surface of a semiconductor structure.
摘要:
A CMOS silicide metal integration scheme that allows for the incorporation of silicide contacts (S/D and gates) and metal silicide gates using a self-aligned process (salicide) as well as one or more lithography steps is provided. The integration scheme of the present invention minimizes the complexity and cost associated with fabricating a CMOS structure containing silicide contacts and silicide gate metals.
摘要:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
摘要:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
摘要:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region in a semiconductor substrate for accommodation of a first type semiconductor device; forming a second well region in the semiconductor substrate for accommodation of a second type semiconductor device; shielding the first type semiconductor device with a mask; depositing a first metal layer over the second type semiconductor device; performing a first salicide formation on the second type semiconductor device; removing the mask; depositing a second metal layer over the first and second type semiconductor devices; and performing a second salicide formation on the first type semiconductor device. The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different silicide material over different devices.
摘要:
A semiconductor device includes a semiconductor substrate having at least one gap, extending under a portion of the semiconductor substrate. A gate stack is on the semiconductor substrate. A strain layer is formed in at least a portion of the at least one gap. The strain layer is formed only under at least one of a source region and a drain region of the semiconductor device.
摘要:
A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.